PDF FILES AVAILABLE IN MY WEBSITE - www.ravitestpapers.com

TEST ANSWERS AVAILABLE IN MY BLOG- www.ravitestpapers.in

MY YOUTUBE CHANNEL NAME- RAVI TEST PAPERS

PART A

JOIN MY PAID WHATSAPP GROUP 8056206308 FOR DPPS WITH ANSWERS

- 1. A body of mass m is moving in a circle of radius r with a constant speed v. The force on the body is $\frac{mv^2}{r}$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle [NCERT 1977]
 - (a) $\frac{mv^2}{\pi r^2}$
- (b) Zero
- (c) $\frac{mv^2}{r^2}$
- (d) $\frac{\pi r^2}{mv^2}$
- If the unit of force and length each be increased by four times, then the unit of energy is increased by [CPMT 1987]
 - (a) 16 times
- (b) 8 times
- (c) 2 times
- (d) 4 times
- 3. A man pushes a wall and fails to displace it. He does

[CPMT 1992]

- (a) Negative work
- (b) Positive but not maximum work
- (c) No work at all
- (d) Maximum work
- 4. The same retarding force is applied to stop a train. The train stops after 80 *m*. If the speed is doubled, then the distance will be **[CPMT 1984]**
 - (a) The same
- (b) Doubled
- (c) Halved
- (d) Four times
- 5. A body moves a distance of 10 *m* along a straight line under the action of a force of 5 *N*. If the work done is 25 *joules*, the angle which the force makes with the direction of motion of the body is

[NCERT 1980; JIPMER 1997; CBSE PMT 1999;

BHU 2000; RPMT 2000; Orissa JEE 2002]

(a) 0°

- (b)30°
- (c) 60°
- (d)90°
- 6. You lift a heavy book from the floor of the room and keep it in the book-shelf having a height 2 *m*. In this process you take 5 seconds. The work done by you will depend upon

[MP PET 1993]

- (a) Mass of the book and time taken
- (b) Weight of the book and height of the book-shelf

- (c) Height of the book-shelf and time taken
- (d) Mass of the book, height of the book-shelf and time taken
- 7. A body of mass *m kg* is lifted by a man to a height of one metre in 30 *sec*. Another man lifts the same mass to the same height in 60 *sec*. The work done by them are in the ratio

[MP PMT 1993]

(a) 1:2

(b) 1:1

(c) 2:1

- (d)4:1
- 8. A force $F = (5\hat{i} + 3\hat{j})$ newton is applied over a particle which displaces it from its origin to the point $r = (2\hat{i} 1\hat{j})$ metres. The work done on the particle is

[MP PMT 1995; RPET 2003]

(a) - 7 joules

(b) + 13 *joules*

(c) + 7 joules

- (d) + 11 *joules*
- 9. A force acts on a 30 gm particle in such a way that the position of the particle as a function of time is given by $x = 3t 4t^2 + t^3$, where x is in metres and t is in seconds. The work done during the first 4 seconds is

[CBSE PMT 1998]

(a) 5.28 J

(b) 450 mJ

(c) 490 mJ

- (d) 530 mJ
- 10. A body of mass 10 kg is dropped to the ground from a height of 10 metres. The work done by the gravitational force is $(g = 9.8 \, m \, / \, sec^2)$ [SCRA 1994]

(a) – 490 *Joules*

(b) + 490 Joules

(c) - 980 Joules

- (d) + 980 Joules
- 11. Which of the following is a scalar quantity [AFMC 1998]
 - (a) Displacement
- (b) Electric field
- (c) Acceleration
- (d) Work
- 12. The work done in pulling up a block of wood weighing 2 *kN* for a length of 10*m* on a smooth plane inclined at an angle of 15° with the horizontal is **[AFMC 1999; Pb PMT 2003]**
 - (a) 4.36 *kJ*
- (b) 5.17 kJ
- (c) 8.91 *kJ*
- (d) 9.82 kJ
- 13. A force $\hat{F} = 5\hat{i} + 6\hat{j} 4\hat{k}$ acting on a body, produces a displacement $\hat{s} = 6\hat{i} + 5\hat{k}$. Work done by the force is

[KCET 1999]

JEE MONTHWISE TEST AND NOTES SCHEDULE 2026

JOIN MY JEE PAID WHATSAPP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.4000 TILL 2026 FINAL EXAM.

WHATSAPP - 8056206308

EVERY MONTH APPROXIMATELY 20 TO 30 PAPERS UPLOAD IN MY PAID GROUP

80206308

WHATSAPP

MAY SCHEDULE

UNIT 1 – SETS, RELATIONS AND FUNCTIONS	UNIT 1 – PHYSICS AND MEASUREMENT	UNIT 1 – SOME BASIC CONCEPTS IN CHEMISTRY
UNIT 2 - COMPLEX NUMBERS AND QUADRATIC EQUATIONS	UNIT 2 – KINEMATICS	UNIT 2 – ATOMIC STRUCTURE
UNIT 3 – MATRICES AND DETERMINANTS	UNIT 3 – LAWS OF MOTION	UNIT 3 - CHEMICAL BONDING AND MOLECULAR STRUCTURE

JUNE SCHEDULE

UNIT 4 - PERMUTATIONS AND COMBINATIONS	UNIT 4 – WORK, ENERGY AND POWER	UNIT 4 – CHEMICAL THERMODYNAMICS
UNIT 5 - BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS	UNIT 5 - ROTATIONAL MOTION	UNIT 5 – SOLUTIONS
UNIT 6 – SEQUENCE AND SERIES	UNIT 6 – GRAVITATION	UNIT 6 – EQUILIBRIUM

JULY SCHEDULE

UNIT 7 – LIMIT,	UNIT 7 - PROPERTIES OF	UNIT 7 – REDOX
CONTINUITY AND	SOLIDS AND LIQUIDS	REACTIONS AND
DIFFERENTIABILITY		ELECTROCHEMISTRY
UNIT 8 – INTEGRAL CALCULUS	UNIT 8 – THERMODYNAMICS	UNIT 8 - CHEMICAL KINETICS

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

UNIT 9 – DIFFERENTIAL	UNIT 9 – KINETIC THEORY	UNIT 9 – CLASSIFICATION
EQUATIONS	OF GASES	OF ELEMENTS AND
		PERIODICITY IN
		PROPERTIES

AUGUST SCHEDULE

UNIT 10 - CO-ORDINATE GEOMETRY	UNIT 10 – OSCILLATIONS AND WAVES	UNIT 10 - P - BLOCK ELEMENTS
UNIT 11 - THREE- DIMENSIONAL GEOMETRY	UNIT 11 – ELECTROSTATICS	UNIT 11 - D - AND F - BLOCK ELEMENTS
UNIT 12 - VECTOR ALGEBRA	UNIT 12 - CURRENT ELECTRICITY	UNIT 12 – CO-ORDINATION COMPOUNDS

SEPTEMBER SCHEDULE

UNIT 13 - STATISTICS AND	UNIT 13 - MAGNETIC EFFECTS	UNIT 13 - PURIFICATION AND
PROBABILITY	OF CURRENT AND MAGNETISM	CHARACTERISATION OF
		ORGANIC COMPOUNDS
UNIT 14 – TRIGONOMETRY	UNIT 14 - ELECTROMAGNETIC	UNIT 14 - SOME BASIC
	INDUCTION AND ALTERNATING	PRINCIPLES OF ORGANIC
	CURRENTS	CHEMISTRY
	UNIT 15 - ELECTROMAGNETIC	UNIT 15 – HYDROCARBONS
	WAVES	

Search Google - RAVI TEST PAPERS

OCTOBER SCHEDULE

JEE MATHS PYQS TEST PAPERS	UNIT 16 – OPTICS	UNIT 16 – ORGANIC
UPLOAD		COMPOUNDS CONTAINING
		HALOGENS
	UNIT 17 - DUAL NATURE OF	UNIT 17 – ORGANIC
	MATTER AND RADIATION	COMPOUNDS CONTAINING
		OXYGEN
	UNIT 18 – ATOMS AND NUCLEI	UNIT 18 – ORGANIC
		COMPOUNDS CONTAINING
		NITROGEN

NOVEMBER SCHEDULE

JEE MATHS PYQS TEST	UNIT 19 -	ELECTRONIC	UNIT 19 – BIOMOLECULES
PAPERS UPLOAD	DEVICES		

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

TO SCORE WELL IN THE JEE MAIN EXAM, FOCUS ON HIGH-WEIGHTAGE TOPICS

MATHEMATICS:

- Algebra: Quadratic Equations, Complex Numbers, Sequences and Series, Permutation and Combination, Binomial Theorem.
- Calculus: Limits, Continuity, Differentiation, Integration, Area under curves.
- Geometry: Coordinate Geometry, Parabola, Ellipse, Hyperbola.
- Vectors and 3D: Vector Algebra, 3D Geometry.

PHYSICS:

80206308

WHATSAPI

- Mechanics: Rotational Motion, Laws of Motion, Work, Energy, Power,
 Conservation Laws.
- Electromagnetism: Electrostatics, Current Electricity, Magnetism, Electromagnetic Induction.
- Optics: Wave Optics, Ray Optics.
- Modern Physics: Photoelectric Effect, Atomic Physics, Nuclear Physics.
- Thermodynamics and Kinetic Theory: Thermodynamics, Kinetic Theory of Gases.
- Oscillations and Waves: Simple Harmonic Motion, Waves.

CHEMISTRY:

Physical Chemistry:

Electrochemistry, Thermodynamics, Chemical Kinetics, Equilibrium, Solutions.

Inorganic Chemistry:

Chemical Bonding, Coordination Compounds, Structure of Atoms and Molecules, Periodic Trends.

Organic Chemistry:

Aldehydes and Ketones, Aromatic Hydrocarbons, Alkyl Halides, Aryl Halides, Reaction Mechanisms, Nomenclature.

WEBSITE www.ravitestpapers.com BLOG www.ravitestpapers.in

JEE MAIN 2025 CHAPTER - WISE WEIGHTAGE

	LEE MANIN 2025 CHARTER MAISE MEIGHTAGE OF RUNGIO			
	JEE MAIN 2025 CHAPTER - WISE WEIGHTAGE OF PHYSICS			
1.	CHAPTER NAME	NO. OF	WEIGHTAGE	
	CHAPTER NAIVIE	QUESTIONS	WEIGHTAGE	
2.	ELECTROSTATICS	1	3.3%	
3.	CAPACITORS	1	3.3%	
4.	SIMPLE HARMONIC MOTION	1	3.3%	
5.	SOUND WAVES	1	3.3%	
6.	ELASTICITY	1	3.3%	
7.	ERROR IN MEASUREMENT	1	3.3%	
8.	CIRCULAR MOTION	1	3.3%	
9.	ELECTROMAGNETIC WAVES	1	3.3%	
10.	SEMICONDUCTORS	1	3.3%	
11.	MAGNETIC EFFECT OF	2	6.6%	
	CURRENT AND MAGNETISM	2		
12.	ALTERNATING CURRENT	2	6.6%	
13.	KINETIC THEORY OF GASES &	•	6.6%	
	THERMODYNAMICS	2	0.0%	
14.	KINEMATICS	2	6.6%	
15.	WORK, ENERGY, AND	2	6.6%	
	POWER		0.0%	
16.	LAW OF MOTION	2	6.6%	
17.	CENTRE OF MASS	2	6.6%	
18.	ROTATIONAL DYNAMICS	2	6.6%	
19.	MODERN PHYSICS	2	6.6%	
20.	WAVE OPTICS	2	6.6%	
21.	CURRENT ELECTRICITY	3	9.9%	

CLICK LINK AND JOIN MY FREE WHATSAPP SCHOOL TEST GROUPS

80206308

WHATSAPP

- NEET நீட் JEE 2025-26 TEST GROUP
- CBSE 6TH TO 12TH 2025 26 FREE COMMON TEST GROUP
- TN 6TH TO 12TH 2025 26 FREE COMMON TEST GROUP
- NEET JEE TELEGRAM TEST GROUP
- CBSE SAMACHEER KALVI SCHOOL TEST GROUP

Contact Form OR WHATSAPP 8056206308

CHECK MY BLOGGER

www.ravitestpapers.in

END OF THE PAGE ALL CLASS WHATSAPP TEST GROUP LINK GIVEN

JUST CLICK ON LINK AND JOIN MY ANY GROUP லிங்கை க்ளிக் செய்து வாட்ஸாப்ப் TNPSC தேர்வுகள் குரூப்பில் இணையலாம்

- TNPSC TET SI EXAM WHATSAPP TEST GROUP LINK
- TNPSC TELEGRAM APP TEST GROUP LINK

	JEE MAIN 2025 CHAPTER - WISE WEIGHTAGE OF CHEMISTRY			
1.	CHAPTERS	NO. OF QUESTIONS	WEIGHTAGE	
2.	MOLE CONCEPT	1	3.3%	
3.	REDOX REACTIONS	1	3.3%	
4.	ELECTROCHEMISTRY	1	3.3%	
5.	CHEMICAL KINETICS	1	3.3%	
6.	SOLUTION & COLLIGATIVE PROPERTIES	1	3.3%	
7.	GENERAL ORGANIC CHEMISTRY	1	3.3%	
8.	STEREOCHEMISTRY	1	3.3%	
9.	HYDROCARBON	1	3.3%	
10.	ALKYL HALIDES	1	3.3%	
11.	CARBOXYLIC ACIDS & THEIR DERIVATIVES	1	6.6%	
12.	CARBOHYDRATES, AMINO ACIDS, AND POLYMERS	1	6.6%	
13.	AROMATIC COMPOUNDS	1	6.6%	
14.	ATOMIC STRUCTURE	2	6.6%	
15.	CHEMICAL BONDING	2	6.6%	
16.	CHEMICAL AND IONIC EQUILIBRIUM	2	6.6%	
17.	SOLID-STATE AND SURFACE CHEMISTRY	2	6.6%	
18.	NUCLEAR & ENVIRONMENTAL CHEMISTRY	2	6.6%	
19.	THERMODYNAMICS & THE GASEOUS STATE	2	6.6%	
20.	TRANSITION ELEMENTS & COORDINATION COMPOUNDS	3	9.9%	
21.	PERIODIC TABLE, P-BLOCK ELEMENTS	3	9.9%	

Search Google - RAVI TEST PAPERS

RAVI TEST PAPERS & NOTES WHATSAPP - 8056206308

JOIN MY JEE PAID WHATSAPP TEST GROUP WITH ANSWERS.
ONE TIME FEES RS.4000 TILL 2026 FINAL EXAM

JEE NEET CBSE AVAILABLE PDF SALES MATERIALS

1.	1. JEE MAIN 2013 TO 2025	RS.200
2.	2. JEE ADV 2013 TO 2025	RS.200
3.	3. JEE JAN 2025 ALL SHIFTS QUS ANS	RS.200
4.	4. JEE 40 DAYS PCM 120 CHAPTER WISE TESTS	RS.500
5.	5. JEE PYQ PCM CHAPTERWISE	RS.500
6.	6. JEE CHAPTER WISE 10 DPPS PCM CLASS 11 & 12	RS.350
7.	7. JEE 25 FULL MOCK TESTS WITH SOLUTIONS	RS.500
8.	8. MATHS 11 12 MCQS WORD FORMAT	RS.250
9.	9. CHEMISTRY 11 12 MCQS WORD FORMAT	RS.250
10.	10. PHYSICS 11 12 MCQS WORD FORMAT	RS.250
11.	11. CHEMISTRY FOUNDATION 11TH WORD PDF	RS.200
12.	12. CHEMISTRY FOUNDATION 12TH WORD PDF	RS.200
13.	13. MATHS FOUNDATION 11TH WORD PDF	RS.200
14.	14. MATHS FOUNDATION 12TH WORD PDF	RS.200
15.	15. PHYSICS FOUNDATION 11TH WORD PDF	RS.200
16.	16. PHYSICS FOUNDATION 12TH WORD PDF	RS.200
17.	17. 80 NEET FULL MOCK TEST PAPERS	RS.2000
18.	18. 80 நீட் தமிழ் மீடியம் FULL MOCK TEST PAPERS	RS.1500
19.	19. NEET 45 PCB EM SUBJECT 200 MARKS TESTS	RS.1000
20.	20. NEET 45 PCB தமிழ் மீடியம் SUBJECT 200 MARKS TESTS	RS.1000

21.	21. NEET BIOLOGY CHAPTER QUS BANK	RS.500
22.	22. NEET CHEMISTRYY CHAPTER QUS BANK	RS.500
23.	23. NEET PHYSICS CHAPTER QUS BANK	RS.500
24.	24. NEET இயற்பியல் CHAPTERS QUS BANK	RS.500
25.	25. NEET உயிரியல் CHAPTERS QUS BANK	RS.500
26.	26. NEET வேதியல் CHAPTERS QUS BANK	RS.500
27.	27. NEET 60 MARKS EM PCB SLIP 99 TESTS	RS.500
28.	28. NEET நீட் PCB 100 MARKS 86 CHAPTERS SLIP TESTS	RS.500
29.	29. NEET 9528 MCQS ANS TN உயிரியல் வேதியல் இயற்பியல் NOT SOLVED ONLY ANSWERS	RS.500
30.	30. NEET 16000 MCQS ANS TN STATE BIOLOGY CHEMISTRY PHYSICS NOT SOLVED ONLY ANSWERS	RS.750
31.	31. BIOLOGY FOUNDATION 11TH WORD PDF	RS.200
32.	32. BIOLOGY FOUNDATION 12TH WORD PDF	RS.200
33.	33. NEET 54 PCB FULL TESTS	RS.500
34.	34. PYQS SINGLE BIOLOGY NEET	RS.250
35.	35. PYQS SINGLE CHEMISTRY NEET	RS.250
36.	36. PYQS SINGLE PHYSICS NEET	RS.250
37.	37. NEET BIOLOGY CHAP PRE QUESTION WITH SOLUTION WORD PDF	RS.200
38.	38. NEET CHEMISTRY CHAP PRE QUS WITH SOLUTION WORD PDF	RS.200
39.	39. NEET PHYSICS CHAP PRE QUESTION WITH SOLUTION WORD PDF	RS.200
40.	40. NEET JUNE TO MARCH 47 PCB COMBINED 300+ QUS TESTS	RS.1000

41.	1. 12TH CBSE MATHS CHAPTER STUDY MATERIAL	RS.250
42.	2. 12TH CBSE PHYSICS CHAPTER STUDY MATERIAL	RS.250
43.	3. 12TH CBSE CHEMISTRY CHAPTER STUDY MATERIAL	RS.250
44.	4. 12TH CBSE BIOLOGY CHAPTER STUDY MATERIAL	RS.250
45.	5. 12TH CBSE COMPUTER CHAPTER STUDY MATERIAL	RS.250
46.	6. 12TH CBSE MATHS SLIP CHAPTER TESTS	RS.200
47.	7. 12TH CBSE PHYSICS CHAPTERS TESTS	RS.200
48.	8. 12TH CBSE CHEMISTRY SLIP CHAPTER TESTS	RS.200
49.	9. 12TH CBSE PCMB CSC MCQS ONLY (PER SUBJECT)	RS.100
50.	10. 12TH CBSE PCMB PREVIOUSLY ASKED QB (PER SUBJECT)	RS.150
51.	11. 12TH NOTES AND SAMPLE PAPER PCMB	RS.400
52.	12. 12TH CBSE ACCOUNTS STUDY MATERIALS	RS.250
53.	13. 12TH ECONOMICS STUDY MATERIALS	RS.250
54.	14. 12TH CBSE BUS STUDIES CHAPTER STUDY MATERIAL	RS.250
55.	15. 12TH CBSE AC BST ECO PRE YEAR PAPERS (PER SUBJECT)	RS.150
56.	16. 12TH NOTES AND SAMPLE PAPER AC BST ECO	RS.300
57.	17. 11TH CBSE MATHS CHAPTER STUDY MATERIAL	RS.250
58.	18. 11TH CBSE PHYSICS CHAPTER STUDY MATERIAL	RS.250
59.	19. 11TH CBSE CHEMISTRY CHAPTER STUDY MATERIAL	RS.250
60.	20. 11TH CBSE BIOLOGY CHAPTER STUDY MATERIAL	RS.250
61.	21. 11TH NOTES AND SAMPLE PAPER AC BST ECO	RS.300
62.	22. 11TH NOTES AND SAMPLE PAPER PCMB	RS.400

63.	23. 10TH CBSE MATHS CHAPTER STUDY MATERIAL	RS.250
64.	24. 10TH CBSE SCIENCE CHAPTER STUDY MATERIAL	RS.250
65.	25. 10TH CBSE SOCIAL SCIENCE CHAPTER STUDY MATERIAL	RS.250
66.	26. 10TH CBSE ENGLISH CHAPTER STUDY MATERIAL	RS.150
67.	27. 10TH CBSE HINDI CHAPTER STUDY MATERIAL	RS.150
68.	28. 10TH CBSE MATHS SLIP TESTS	RS.200
69.	29. 10TH CBSE SCIENCE SLIP TESTS	RS.200
70.	30. 10TH CBSE SST SLIP TESTS	RS.200
71.	31. 10TH CBSE MATHS FOUNDATION	RS.150
72.	32. 10TH CBSE SCIENCE FOUNDATION	RS.150
73.	33. 10TH CBSE SST FOUNDATION	RS.150
74.	34. 10TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300
75.	35. 9TH CBSE MATHS CHAPTER STUDY MATERIAL	RS.250
76.	36. 9TH CBSE SCIENCE CHAPTER STUDY MATERIAL	RS.250
77.	37. 9TH CBSE SST CHAPTER STUDY MATERIAL	RS.250
78.	38. 9TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300
79.	39. 9TH CBSE MATHS FOUNDATION	RS.150
80.	40. 8TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300
81.	41. 8TH CBSE MATHS FOUNDATION	RS.150
82.	42. 7TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300
83.	43. 7TH CBSE MATHS FOUNDATION	RS.150
84.	44. 6TH NOTES AND SAMPLE PAPER MAT SCI SST	RS.300

85.	45. 6TH CBSE MATHS FOUNDATION	RS.150
		1101200
86.	46. 10TH MATHS FULL PAPERS COLLECTIONS	RS.250
87.	47. 10TH SCIENCE FULL PAPERS COLLECTIONS	RS.250
88.	48. 10TH SST FULL PAPERS COLLECTIONS	RS.250
00.	48. IOTH 331 FOLL PAPERS COLLECTIONS	K3.230
89.	49. 12TH MATHS FULL PAPERS COLLECTIONS	RS.250
90.	50. 12TH PHYSICS FULL PAPERS COLLECTIONS	RS.250
91.	51. 12TH CHEMISTRY FULL PAPERS COLLECTIONS	RS.250
J1.	31. 12111 CHEWISTRI FOLL FAFERS COLLECTIONS	N3.230
92.	52. 12TH BIOLOGY FULL PAPERS COLLECTIONS	RS.250

JOIN 2026 - 27 WHATSAPP JEE NEET TEST GROUP 1 YEAR FEES RS.4000

JOIN 2026 - 27 WHATSAPP CBSE 10 & 12TH TEST GROUP 1 YEAR FEES RS.3000

JOIN WHATSAPP PAID GROUP

NOVEMBER 1ST 2025 TO TILL 2026 FINAL EXAM

WHATSAPP 8056206308

CBSE 10 & 12 - FEES RS.1250

CBSE 9 & 11 - FEES RS.750

JEE - FEES RS.1000

NEET - FEES RS.2000

SEARCH GOOGLE

www.ravitestpapers.com www.ravitestpapers.in RAVI MATHS TUITION CENTER

	JEE MAIN 2025 CHAPTER - WISE WE	EIGHTAGE OF	MATHEMATICS
1.	CHAPTER NAME	NO. OF QUESTIONS	WEIGHTAGE
2.	SETS	1	3.3%
3.	PERMUTATIONS & COMBINATIONS	1	3.3%
4.	PROBABILITY	1	3.3%
5.	COMPLEX NUMBERS	1	3.3%
6.	BINOMINAL THEOREM	1	3.3%
7.	LIMITS	1	3.3%
8.	DIFFERENTIABILITY	1	3.3%
9.	INDEFINITE INTEGRATION	1	3.3%
10.	DEFINITE INTEGRATION	1	3.3%
11.	DIFFERENTIAL EQUATIONS	1	3.3%
12.	HEIGHT & DISTANCE	1	3.3%
13.	TRIGONOMETRIC EQUATIONS	1	3.3%
14.	THE AREA UNDER THE CURVE	1	3.3%
15.	QUADRATIC EQUATIONS	1	3.3%
16.	VECTORS	1	3.3%
17.	TANGENTS AND NORMALS	1	3.3%
18.	MAXIMA AND MINIMA	1	3.3%
19.	STATISTICS	1	3.3%
20.	PARABOLA	1	3.3%
21.	ELLIPSE	1	3.3%
22.	HYPERBOLA	1	3.3%
23.	SEQUENCES & SERIES	2	6.6%
24.	STRAIGHT LINES	2	6.6%
25.	3-D GEOMETRY	2	6.6%
26.	DETERMINANTS	2	6.6%

8056206308

WHATSAPP

RAVI TEST PAPERS & NOTES WHATSAPP - 8056206308
JOIN MY 12TH CBSE PAID WHATSAPP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.3000 TILL 2026 FINAL EXAM

NEET MONTHWISE TEST AND NOTES SCHEDULE 2026

JOIN MY NEET PAID WHATSAPP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.4000 TILL 2026 FINAL EXAM. WHATSAPP - 8056206308

JOIN MARCH 2026 TO TILL EXAM FEES RS.1500

EVERY MONTH APPROXIMATELY 20 TO 30 PAPERS UPLOAD IN MY PAID GROUP

MAY SCHEDULE

PLANT KINGDOM	ANIMAL KINGDOM	BREATHING AND
		EXCHANGE OF GASES
ORGANIC CHEMISTRY	SOLUTIONS	THERMODYNAMICS
WORK POWER ENERGY	MOTION OF SYSTEM OF	LOCOMOTION AND
	PARTICLES ANDRIGID BODY	MOVEMENT

JUNE SCHEDULE

LIVING WORLD Q	BIOLOGICAL	HUMAN REPRODUCTION
	CLASSIFICATION	
REPRODUCTIVE HEALTH	HUMAN HEALTH AND	ECOSYSTEM
	DISEASES	
GRAVITATION	KINEMATICS	CELL UNIT OF LIFE

JULY SCHEDULE

CELL CYCLE AND CELL	EVOLUTION	STRUCTURE OF ATOM
DIVISION		
EQUILIBRIUM	ELECTROCHEMISTRY	CHEMICAL KINETICS
REDOX REACTION	d f BLOCK ELEMENTS	LAWS OF MOTION

AUGUST SCHEDULE

STRUCTURAL	MICROBES IN HUMAN	BIOTECHNOLOGY
ORGANISATION IN	WELFARE	PRINCIPLES AND PROCESS
ANIMALS		
BIOTECHNOLOGY AND ITS	ORGANISMS AND	CHEMICAL BONDING AND

WEBSITE www.ravitestpapers.com BLOG www.ravitestpapers.in

APPLICATIONS	APPLICATIONS	MOLECULAR STRUCTURE
CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES	P BLOCK ELEMENTS	OSCILLATIONS' AND WAVES

SEPTEMBER SCHEDULE

MOLECULAR BASIS OF	BIODIVERSITY AND	ENVIRONMENTAL ISSUES
INHERITANCE	CONVERSATION	
BASIC CONCEPTS OF	ORGANIC CHEMISTRY	REDOX REACTION
CHEMISTRY	SOME BASIC PRINCIPLES	UNITS
	AND TECHNIQUES	
COORDINATION	MAGNETIC EFFECTS AND	MEASUREMENT
COMPOUNDS	MAGNETISM	INDUCTION AND
		ALTERNATING CURRENTS

OCTOBER SCHEDULE

MORPHOLOGY OF	ANATOMY OF FLOWERING	SEXUAL REPRODUCTION IN
FLOWERING PLANTS	PLANTS	FLOWERING PLANTS
PRINCIPLES OF	ALDEHYDES' KETONES	ORGANIC COMPOUNDS
INHERITANCE AND	CARBOXYLIC ACIDS	CONTAING NITROGEN
VARIATION		
HALOALKANES' AND	ALCOHOL, PHENOL AND	PHYSICAL WORLD AND
HALOARENES	ETHERS	MEASUREMENT
OPTICS	DUAL NATURE OF MATTER	SEMICONDUCTOR
	AND RADIATION	ELECTRONIC DEVICES

NOVEMBER SCHEDULE

RESPIRATION OF PLANTS	PLANT GROWTH AND	BODY FLUIDS AND
	DEVELOPMENT	CIRCULATION
NEURAL CONTROL AND	STRATIGES FOR	HYDROCARBONS
COORDINATION	ENHANCEMENT IN FOOD	CELL STr
	PRODUCTION	OLLL OII
BIOMOLECULES	CLASSIFICATION &	ATOMS AND NUCLAI
	NOMENCLATURE	

DECEMBER TO MAY SCHEDULE

BALANCE TOPICS & PYQS UPLOAD FROM DECEMBER TO JANUARY

FEBRUARY & MARCH TILL BOARDS NO TESTS

MARCH TO TILL MAY FINALS FULL 120 MOCK TESTS EVERYDAY 3 PAPERS

WEBSITE <u>www.ravitestpapers.com</u> **BLOG** <u>www.ravitestpapers.in</u>

JOIN MY NEET PAID WHATSAPP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.4000 TILL 2026 FINAL EXAM

UPLOAD 500+ PRACTICE PAPERS FOR 1 YEAR

NEET/JEE MCQS PDF SALES

ENGLISH MEDIUM

PHYSICS CHEMISTRY BIOLOGY 26000+ MCQS

COST RS.2500 JEE MATHS
MAIN &
ADVANCE

COST RS.1000

NEET 10 MOCK TESTS COST RS.500 நீட் தமிழ் மீடியம் இயற்பியல் வேதியல் உயிரியல் 17000+ MCQS COST RS.1500

WHATSAPP - 8056206308

CLICK LINK AND JOIN MY FREE WHATSAPP SCHOOL TEST GROUPS

- NEET நீட் JEE 2025-26 TEST GROUP
- CBSE 6TH TO 12TH 2025 26 FREE COMMON TEST GROUP
- TN 6TH TO 12TH 2025 26 FREE COMMON TEST GROUP
- NEET JEE TELEGRAM TEST GROUP
- CBSE SAMACHEER KALVI SCHOOL TEST GROUP

Contact Form OR WHATSAPP 8056206308

CHECK MY BLOGGER

www.ravitestpapers.in

END OF THE PAGE ALL CLASS WHATSAPP TEST GROUP LINK GIVEN

JUST CLICK ON LINK AND JOIN MY ANY GROUP லிங்கை க்ளிக் செய்து வாட்ஸாப்ப் TNPSC தேர்வுகள் குரூப்பில் இணையலாம்

- TNPSC TET SI EXAM WHATSAPP TEST GROUP LINK
- TNPSC TELEGRAM APP TEST GROUP LINK

RAVI MATHS TUITION CENTRE, CHENNAI 82. WHATSAPP 8056206308. Powered by Blogger.

12TH MONTHWISE TEST AND NOTES SCHEDULE 2026

JOIN MY 12TH CBSE PAID WHATSAPP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.3000 TILL 2026 FINAL EXAM. WHATSAPP – 8056206308

JOIN DECEMBER TO TILL EXAM FEES RS.1500

MAY SCHEDULE

SEARCH GOOGLE

1 RELATION AND	2 INVERSE TRIGNOMETRIC	3 MATRICES
FUNCTIONS		
4.DETERMINANTS	PHY ELECTRIC CHARGES	PHY ELECTROSTATIC
	AND FIELDS	POTENTIAL AND
		CAPACITANCE
CHEM SOLUTIONS	CHEM ELECTROCHEMISTRY	BIO SEXUAL
		REPRODUCTION IN
		FLOWERING PLANTS
BIO HUMAN	CSC REVISION OF THE	SOME ENGLISH
REPRODUCTION	BASICS OF PYTHON	

JUNE SCHEDULE

5 CONTINUITY AND	6.APPLICATION OF	CURRENT ELECTRICITY
DIFFERENTIABILITY	DERIVATIVES	
MOVING CHARGES AND	3. CHEMICAL KINETICS	4. D- AND F- BLOCK
MAGNETISM		ELEMENTS
3 REPRODUCTIVE HEALTH	4 PRINCIPLES OF	2 FUNCTIONS
	INHERITANCE AND	
	VARIATION	
3 FILE HANDLING	SOME ENGLISH	

JULY SCHEDULE

7.INTEGRALS	8.APPLICATION OF	MAGNETISM AND MATTER
	INTEGRALS	
ELECTROMAGNETIC	5 COORDINATION	6 HALOALKANES AND
INDUCTION	COMPOUNDS	HALOARENES

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

5 MOLECULAR BASIS OF INHERITANCE	6 EVOLUTION	4 USING PYTHON LIBRARIES
5 DATA STRUCTURES	SOME ENGLISH	

AUGUST SCHEDULE

9. DIFFERENTIAL	10.VECTOR ALGEBRA	ALTERNATING CURRENT
	10.VECTOR AEGEBRA	ALI ERRATING CORRECT
EQUATIONS		
ELECTROMAGNETIC WAVES	7 ALCOHOLS PHENOLS AND	8 ALDEHYDES, KETONES
	ETHERS	AND CARBOXYLIC
7 HUMAN HEALTH AND	8 MICROBES IN HUMAN	6 COMPUTER NETWORKS
DISEASE	WELFARE	
7 DATA BASE	SOME ENGLISH	
MANAGEMENT		

SEPTEMBER SCHEDULE

<u> </u>		
11.THREE DIMENSIONAL	12. LINEAR	RAY OPTICS AND OPTICAL
GEOMETRY	PROGRAMMING	INSTRUMENTS
WAVE OPTICS	9 AMINES	8 STRUCTURED QUERY
		LANGUAGE (SQL)
9 INTERFACE OF PYTHON	SOME ENGLISH	
WITH AN SQL DATABASE		

OCTOBER SCHEDULE

WHATSAPP - 8056206308

13. PROBABILITY	DUAL NATURE OF	ATOMS
	RADIATION AND MATTER	
10 BIOMOLECULES	9 BIOTECHNOLOGY	10 BIOTECHNOLOGY AND
	PRINCIPLES AND	ITS APPLICATIONS
	PROCESSES	
11 ORGANISMS AND		
POPULATIONS		

NOVEMBER SCHEDULE

NUCLEI	SEMICONDUCTOR	12 ECOSYSTEM
	ELECTRONICS	
13 BIODIVERSITY AND		
CONSERVATION		

THIS ONE APPROXIMATE FREE TESTS SCHEDULE FOR COMMON WHATSAPP GROUP

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

10TH MONTHWISE TEST AND NOTES SCHEDULE 2026

JOIN MY 10TH CBSE PAID WHATSAPP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.3000 TILL 2026 FINAL EXAM. WHATSAPP - 8056206308

JOIN DECEMBER TO TILL EXAM FEES RS.1500

80206308

WHATSAPP

MAY SCHEDULE

REAL NUMBERS	POLYNOMIALS	LINEAR EQUATION
CHEMICAL REACTIONS AND	LIFE PROCESSES	LIGHT REFLECTION AND
EQUATIONS		REFRACTION
HIS - THE RISE OF	GEO - RESOURCES AND	PS - POWER SHARING
NATIONALISM IN EUROPE	DEVELOPMENT	
ECO - DEVELOPMENT	SOME ENGLISH TAMIL HINDI	

JUNE SCHEDULE

4. QUADRATIC EQUATIONS	5. ARITHMETIC	2 ACIDS, BASES AND SALTS
	PROGRESSIONS	
6 CONTROL AND	2. HIS - NATIONALISM IN	7. GEO - FOREST AND
COORDINATION	INDIA	WILDLIFE RESOURCES
14. PS - FEDERALISM	19. ECO - SECTORS OF THE	SOME ENGLISH TAMIL
	INDIAN ECONOMY	HINDI

JULY SCHEDULE

6. TRIANGLES	7. COORDINATE GEOMETRY	11 ELECTRICITY
3 METALS AND NON-	3. HIS - THE MAKING OF A	8. GEO - WATER
METALS	GLOBAL WORLD	RESOURCES
15. PS - GENDER, RELIGION	20. ECO - MONEY AND	SOME ENGLISH TAMIL
AND CASTE	CREDIT	HINDI

AUGUST SCHEDULE

8. INTRODUCTION TO	9. SOME APPLICATIONS OF	4 CARBON AND ITS
TRIGONOMETRY	TRIGONOMETRY	COMPOUNDS
7 HOW DO ORGANISMS	4. HIS - THE AGE OF	9. GEO - AGRICULTURE
REPRODUCE	INDUSTRIALIZATION	
16. PS - POLITICAL PARTIES	21. ECO - GLOBALISATION AND	SOME ENGLISH TAMIL HINDI
	THE INDIAN	

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

SEPTEMBER SCHEDULE

10. CIRCLES	11. AREAS RELATED TO CIRCLES	8 HEREDITY
10 THE HUMAN EYE AND	5. HIS - PRINT CULTURE	10. GEO - MINERALS AND
17. PS - OUTCOMES OF	AND MODERN WORLD 22. ECO - CONSUMER	ENERGY RESOURCES SOME ENGLISH TAMIL
DEMOCRACY	RIGHTS	HINDI

OCTOBER SCHEDULE

80206308

NHATSAPF

12. SURFACE AREAS AND	13. STATISTICS	14. PROBABILITY
VOLUMES		
12 MAGNETIC EFFECTS OF	12 OUR ENVIRONMENT	11. GEO -
ELECTRIC CURRENT		MANUFACTURING
		INDUSTRIES
12. GEO - LIFE LINES OF	SOME ENGLISH TAMIL	
NATIONAL ECONOMY AND	HINDI	

THIS ONE APPROXIMATE FREE TESTS SCHEDULE FOR COMMON WHATSAPP GROUP

CLICK LINK AND JOIN MY FREE WHATSAPP Contact Form OR WHATSAPP 8056206308 லிங்கை க்ளிக் செய்து வாட்ஸாப்ப் SCHOOL TEST GROUPS TNPSC தேர்வுகள் குரூப்பில் **CHECK MY BLOGGER** இணையலாம் • NEET நீட் JEE 2025-26 TEST GROUP TNPSC TET SI EXAM WHATSAPP CBSE 6TH TO 12TH 2025 - 26 FREE www.ravitestpapers.in **TEST GROUP LINK COMMON TEST GROUP END OF THE PAGE ALL** TNPSC TELEGRAM APP TEST GROUP TN 6TH TO 12TH 2025 - 26 FREE **COMMON TEST GROUP** LINK **CLASS WHATSAPP TEST** NEET JEE TELEGRAM TEST GROUP **GROUP LINK GIVEN** CBSE SAMACHEER KALVI SCHOOL **TEST GROUP** JUST CLICK ON LINK AND JOIN MY ANY GROUP RAVI MATHS TUITION CENTRE, CHENNAI 82. WHATSAPP 8056206308. Powered by Blogger.

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

	(a) 18 units	(b) 15 units	
	(c) 12 units	(d) 10 units	
14.	A force of 5 N acts	on a 15 kg body initially at rest. The work done by the force during th	e
	first second of moti	on of the body is [JIPMER 1999]	
	(a) 5 <i>J</i>	(b) $\frac{5}{6}J$	
	(c) 6 <i>J</i>	(d) 75 J	
15.		king an angle θ with the horizontal, acting on an object displaces it be zontal direction. If the object gains kinetic energy of $1J$, the horizontagories is	
	·	[EAMCET (Engg.) 2000)]
	(a) 1.5 <i>N</i>	(b) 2.5 N	
	(c) 3.5 N	(d) 4.5 N	
16.	The work done aga	inst gravity in taking 10 kg mass at 1m height in 1sec will be	
	[RPMT 2000]		
	(a) 49 <i>J</i>	(b) 98 <i>J</i>	
	(c) 196 <i>J</i>	(d) None of these	
17.		in e^- acquires when accelerated through a potential difference of 1 vo	lt
	is called	[UPSEAT 2000]	
	(a) 1 <i>Joule</i>	(b) 1 Electron volt	
	(c) 1 <i>Erg</i>	(d) 1 Watt.	
18.	A body of mass 6kg	is under a force which causes displacement in it given by $s = \frac{t^2}{4}$ metro	?5
	where t is time. The	e work done by the force in 2 seconds is	
		[EAMCET 2001	L]
	(a) 12 <i>J</i>	(b) 9 J	
	(c) 6 <i>J</i>	(d) 3 J	
19.	-	kg at rest is acted upon simultaneously by two forces 4 N and 3N a	at
	right angles to each	other. The kinetic energy of the body at the end of 10 sec is	_
	()	[Kerala (Engg.) 2003	L]
	(a) 100 <i>J</i>	(b) 300 <i>J</i>	
	(c) 50 <i>J</i>	(d) 125 <i>J</i>	
20.	-	10kg is sliding on a plane with an initial velocity of $10m/s$. If coefficier	١t
	or inction between	surface and cylinder is 0.5, then before stopping it will describe [Pb. PMT 200]	11
	(a) 12.5 <i>m</i>	(b) 5 <i>m</i>	-1
	(4) 12.3 111	(6) 5 111	

	(c) 7.5 <i>m</i>	(d) 10 <i>m</i>		
21.	A force of $(3\hat{i} + 4\hat{j})$ N	ewton acts on a body and o	displaces it by $(3\hat{i}+4\hat{j})m$. The work done by the	ne
	force is	[AIIMS 2001]		
	(a) 10 <i>J</i>	(b) 12 <i>J</i>		
	(c) 16 J	(d) 25 <i>J</i>		
22.	A 50kg man with 20	Okg load on his head climbs	s up 20 steps of $0.25m$ height each. The wo	rk
	done in climbing is			
			[JIPMER 200	2]
	(a) 5 <i>J</i>	(b) 350 J		
	(c) 100 J	(d) 3430 <i>J</i>		
23.	A force $\vec{F} = 6\hat{i} + 2\hat{j} - 3\hat{k}$	acts on a particle and pro	oduces a displacement of $\vec{s} = 2\hat{i} - 3\hat{j} + x\hat{k}$. If the	ne
	work done is zero, t	the value of <i>x</i> is	[Kerala PMT 2002]	
	(a) – 2	(b) 1/2		
	(c) 6	(d) 2	0 0	
24.	A particle moves fi	rom position $\hat{r}_1 = 3\hat{i} + 2\hat{j} - 6\hat{k}$ to	o position $\hat{r}_2 = 14\hat{i} + 13\hat{j} + 9\hat{k}$ under the action	of
	force $4\hat{i} + \hat{j} + 3\hat{k} N$. The	work done will be	[Pb. PMT 2002,03]	
	(a) 100 <i>J</i>	(b) 50 J		
	(c) 200 J	(d) 75 J		
25.	A force $(\hat{F}) = 3\hat{i} + c\hat{j} + 2\hat{k}$	acting on a particle caus	ses a displacement: $\binom{p}{s} = -4\hat{i} + 2\hat{j} + 3\hat{k}$ in its over	vn
	direction. If the wo	rk done is $6J$, then the valu	e of 'c' is [CBSE PMT 2002]	
	(a) 0	(b)1		
	(c) 6	(d) 12		
26.	In an explosion a bo	ody breaks up into two pied	ces of unequal masses. In this	
	[MP PET 2002]	0		
		ave numerically equal mon	nentum	
		have more momentum		
	•	have more momentum		
		ave equal kinetic energy		
27.			[AFMC 2002]	
	(a) Unit	(b) Watt		
_	(c) Horse Power	(d) None		
28.	if force and displace	•	on of force are doubled. Work would be	
	(a) Double	[AFMC 2002] (b) 4 times		
	(c) Half			
	(6) 11011	(d) $\frac{1}{4}$ times		

	N is acting on it in	a direction making	g an angle of 60° with the x-axis	and displaces it along
	the x-axis by 4 met	res. The work don	e by the force is	[MP PET 2003]
	(a) 2.5 <i>J</i>	(b) 7.25 <i>J</i>		
	(c) 40 J	(d) 20 <i>J</i>		
30.		I acts on a body a	nd produces a displacement \vec{s} =	$(6\hat{i} - 5\hat{j} + 3\hat{k})$ m. The work
	done will be			
				[CPMT 2003]
	(a) 10 <i>J</i>	(b) 20 <i>J</i>		
	(c) 30 <i>J</i>	(d) 40 <i>J</i>		
31.		_	ot on a table such that a length	
	_		al mass of the chain is 4kg. Wh	at is the work done in
	pulling the entire c		[AIEEE 2004]	
	(a)7.2 <i>J</i>	(b) 3.6 <i>J</i>		
	(c) 120 <i>J</i>	(d) 1200 <i>J</i>	X	
32.	-		constant magnitude which is al	
	the velocity of the		on of the particle takes place in	a plane. It follows that
	/ . \	[AIEEE 2004]		
	(a)Its velocity is co			
	(b)	Its acceleration i	s constant	
	(c) Its kinetic energ		Car	
	(d)	It moves in a str		
33.			v and strikes a wall having infinie by the ball on the wall is [BC	TECE 2004]
	(a)	Zero	(b) mv J	
	(c) <i>m/v.J</i>	(d) <i>v/m J</i>		
34.	A force $F = (5\hat{i} + 3\hat{j} + 2\hat{j} + 3\hat{j} +$	$(2\hat{k})N$ is applied over	er a particle which displaces it	from its origin to the
			he particle in joules is [AIEEE 20	
	(a)— 7	(b)+7		
	(c)+10	(d)+13		
35.			ody of mass <i>m</i> is travelling son stant force, is directly proportion	_
	monniest ander the		starit rorec, is directly proportion	[Pb. PET 2000]
	(2)	0 /b)	m	נרט. דבו 2000]
	(a)	m^0 (b)	m	
	(C) m ²	(d) \sqrt{m}		

 $_{29}$. A body of mass 5 kg is placed at the origin, and can move only on the x-axis. A force of 10

36.	If a force $F = 4\hat{i} + 5\hat{j}$ 2002]	causes a displacement $\hat{s} = 3\hat{i} + 6\hat{k}$, work done is	[Pb. PET	•
	(a) 4 × 6 unit	(b) 6×3 unit		
	(c) 5 × 6 unit	(d) 4 × 3 unit		
37•		king from a point on the surface of earth (assume te point. What is the work done by him	d smooth) and reaches CE 2004]	;
	(a)Zero	(b) Positive		
	(c) Negative	(d) Nothing can be said		
38.	It is easier to draw principally because	w up a wooden block along an inclined plane the	an to haul it vertically	,
		[CPN	/IT 1977; JIPMER 1997]	
	(a) The friction is r	educed		
	(b) The mass become	mes smaller		
	(c) Only a part of t	he weight has to be overcome		
	(d) 'g' becomes sm	naller		
39.		ound, both the bodies will have the same	p of a tower. At a point [SCRA 1998]	ţ
	(a) Momentum	(b) Kinetic energy		
	(c) Velocity	(d) Total energy		
40.	Due to a force of ($6\hat{i}+2\hat{j})N$ the displacement of a body is $(3\hat{i}-\hat{j})m$, then	the work done is	
	[Orissa JEE 200	5]		
	(a) 16 <i>J</i>	(b) 12 J		
	(c) 8 J	(d) Zero		
41.		from the top of a tower. The ratio of work done hird second of the motion of the ball is	e by force of gravity ir [Kerala PET 2005]	1
	(a) 1 : 2 : 3	(b) 1 : 4 : 9		
	(c) 1 : 3 : 5	(d)1:5:3		
		PART B		
1.	the process is	under the effect of a force $F = Cx$ from $x = 0$ to x CE 2002;Orissa JEE 2005]	$x = x_1$. The work done in	1

(b) $\frac{1}{2}Cx_1^2$

(d)Zero

(a) Cx_1^2

(c) Cx_1

	downward acceler	ration $\frac{g}{4}$. Work done by the cord on the block is	[CPMT
	1972]		
	(a) $Mg \frac{d}{4}$	(b) $3Mg \frac{d}{4}$	
	(c) $-3Mg\frac{d}{4}$	(d) <i>Mgd</i>	
3.	Two springs have	their force constant as k_1 and $k_2(k_1 > k_2)$. When they are	e stretched by the
	same force	[EAMCET 1981]	
	(a) No work is done	e in case of both the springs	
	(b) Equal work is d	one in case of both the springs	
	(c) More work is d	one in case of second spring	
	(d) More work is de	one in case of first spring	
4.	A spring of force of	constant 10 N/m has an initial stretch 0.20 m . In chang	ging the stretch to
	0.25 <i>m</i> , the increas	se in potential energy is about [CPMT	1977]
	(a) 0.1 <i>joule</i>	(b) 0.2 <i>joule</i>	
	(c) 0.3 <i>joule</i>		
5.		rgy of a certain spring when stretched through a dista	
		ork (in joule) that must be done on this spring to str	etch it through an
	additional distance		
		[MNR 1991; CPMT 2002; UPSEAT 2000; Pb. PET 2004]	
	(a) 30	(b) 40	
	(c) 10	(d) 20	
6.		ring constants 1500 N/m and 3000 N/m respectively a	are stretched with
	the same force. In	ey will have potential energy in the ratio	00. DL DN#T 20021
	(2) 4 · 1		98; Pb. PMT 2002]
	(a) 4 : 1	(b) 1 : 4	
_	(c) 2 : 1	(d) 1:2 ong is stretched by the application of a force. If 10 N	force required to
7•	. •	through 1 <i>mm</i> , then work done in stretching the sprir	•
		FMC 2000; JIPMER 2000]	is through 40 mm
	(a) 84 <i>J</i>	(b) 68 <i>J</i>	
	(c) 23 <i>J</i>	(d)8 <i>J</i>	
8.	• •	dent force $F = 7 - 2x + 3x^2$ newton acts on a small body of	of mass 2 <i>kg</i> and
	displaces it from x	= 0 to $x = 5 m$. The work done in <i>joules</i> is [CBSE PMT 19]	994]
	(a) 70	(b) 270	
	(c) 35	(d) 135	

A cord is used to lower vertically a block of mass M by a distance d with constant

	(c) 5.2 <i>J</i>	(d) 24 <i>J</i>		
10.		of a wire is k and that of anoth same distance, then the work do		both the wires are [MH CET 2000]
	(a) $W_2 = 2W_1^2$	(b) $W_2 = 2W_1$		
	(c) $W_2 = W_1$	(d) $W_2 = 0.5W_1$		
11.	•	1 kg moving with a velocity of tant 1000 N/m and comes to spring is		•
	(a) 0.01 m	(b) 0.1 <i>m</i>		
	(C) 0.2 <i>m</i>	(d) 0.5 m	0	
12.	cm. The mass is pu	s hangs attached to a spring of ulled down until the length of the nergy stored in the spring in thi	he spring becomes	60 cm. What is the
	(a) 1.5 <i>Joule</i>	(b) 2.0 <i>Joule</i>		
	(c) 2.5 <i>Joule</i>	(d) 3.0 <i>Joule</i>		
13.	A spring of force con it from 5cm to 15 cm	onstant 800 <i>N/m</i> has an extension is	on of 5 <i>cm.</i> The worl	k done in extending
				[AIEEE 2002]
	(a) 16 <i>J</i>	(b) 8 J		
	(c) 32 <i>J</i>	(d) 24 <i>J</i>		
14.		retched by 2 cm, it stores 100 J rgy will be increased by	of energy. If it is str [Orissa JEE 2	
	(a) 100 <i>J</i>	(b) 200 J		
	(c) 300 J	(d) 400 J		
15.	A spring when stre mm, its potential e	tched by 2 mm its potential end nergy is equal to	ergy becomes 4 J. If i [BCECE 2003]	it is stretched by 10
	(a) 4 <i>J</i>	(b) 54 <i>J</i>		
	(c) 415 J	(d) None		
16.		constant 5×10^3 <i>N/m</i> is stretchework required to stretch it furth	• •	

A body of mass 3 kg is under a force, which causes a displacement in it is given by $s = \frac{t^3}{3}$ (in

[BHU 1998]

m). Find the work done by the force in first 2 seconds

(b) 3.8 J

9.

(a) 2 *J*

	(a) 6.25 <i>N-m</i>	(b) 12.50 <i>N-m</i>
	(c) 18.75 N-m	(d) 25.00 <i>N-m</i>
17.	A mass of 0.5kg m	oving with a speed of 1.5 m/s on a horizontal smooth surface, collides
	with a nearly weigh	ntless spring of force constant $k = 50 N/m$. The maximum compression of
	the spring would be	e [CBSE PMT 2004]
	(a)0.15 <i>m</i>	(b) 0.12 <i>m</i>
	(c) 1.5 <i>m</i>	(d) 0.5 <i>m</i>
18.	A particle moves in	n a straight line with retardation proportional to its displacement. Its
	loss of kinetic energ	gy for any displacement x is proportional to [AIEEE 2004]
	(a) x ²	(b) e^{x}
	(c) <i>x</i>	(d) $\log_e x$
19.	A spring with spring	g constant k when stretched through 1 cm , the potential energy is U . If
	it is stretched by 4	cm. The potential energy will be [Orissa PMT 2004]
	(a)4 <i>U</i>	(b) 8 <i>U</i>
	(c) 16 <i>U</i>	(d) 2 <i>U</i>
20.	A spring with spri	ng constant k is extended from $x = 0$ to $x = x_1$. The work done will be
	[Orissa PMT 200	04]
	(a) kx 1 ²	(b) $\frac{1}{2}kx_1^2$
	(c) $2kx_1^2$	(d) $2kx_1$
21.	If a long spring is st	retched by $0.02 m$, its potential energy is U . If the spring is stretched by
	0.1 m, then its pote	ential energy will be
	[MP PMT 2002;	CBSE PMT 2003; UPSEAT 2004]
	(a) $\frac{U}{5}$	(b) <i>U</i>
	(c)5 <i>U</i>	(d) 25 <i>U</i>
22.	Natural length of a	spring is 60 cm, and its spring constant is 4000 N/m. A mass of 20 kg is
	hung from it. The e	xtension produced in the spring is, (Take $g = 9.8 \text{ m/s}^2$) [DCE 2004]
	(a)4.9 <i>cm</i>	(b) 0.49 <i>cm</i>
	(c) 9.4 <i>cm</i>	(d) 0.94 <i>cm</i>
23.	The spring extends	by x on loading, then energy stored by the spring is:
	(if T is the tension i	n spring and k is spring constant)
		[Pb. PMT 2003]
	(a) $\frac{T^2}{2k}$	(b) $\frac{T^2}{2k^2}$
	<i>∠</i> ∧	$\Delta \mathcal{K}$

(c)
$$\frac{2k}{T^2}$$

(d)
$$\frac{2T^2}{k}$$

24. The potential energy of a body is given by, displacement). The magnitude of force acting on the particle is $U = A - Bx^2$ (Where x is the [BHU 2002]

- (a) Constant
- (b) Proportional to x
- (c) Proportional to x^2
- (d) Inversely proportional to x
- 25. The potential energy between two atoms in a molecule is given by $U(x) = \frac{a}{r^{12}} \frac{b}{r^6}$; where aand b are positive constants and x is the distance between the atoms. The atom is in stable equilibrium when [CBSE PMT 1995]

(a)
$$x = \sqrt[6]{\frac{11a}{5b}}$$
 (b) $x = \sqrt[6]{\frac{a}{2b}}$ (c) $x = 0$ (d) $x = \sqrt[6]{\frac{2a}{b}}$

(b)
$$x = \sqrt[6]{\frac{a}{2b}}$$

(c)
$$x=0$$

(d)
$$x = \sqrt[6]{\frac{2a}{b}}$$

26. Which one of the following is not a conservative force

[Kerala PMT 2005]

- (a) Gravitational force
- (b) Electrostatic force between two charges
- (c) Magnetic force between two magnetic dipoles
- (d) Frictional force

PART C

Two bodies of masses m_1 and m_2 have equal kinetic energies. If p_1 and p_2 are their respective momentum, then ratio $p_1:p_2$ is equal to [MP PMT 1985; CPMT 1990]

(a)
$$m_1 : m_2$$

(b)
$$m_2 : m_1$$

(c)
$$\sqrt{m_1} : \sqrt{m_2}$$
 (d) $m_1^2 : m_2^2$

(d)
$$m_1^2 : m_2^2$$

- Work done in raising a box depends on
 - (a) How fast it is raised
 - (b) The strength of the man
 - (c) The height by which it is raised
 - (d) None of the above
- A light and a heavy body have equal momenta. Which one has greater K.E.

[MP PMT 1985; CPMT 1985; Kerala PMT 2004]

- (a) The light body (b) The heavy body
- (c) The K.E. are equal (d)Data is incomplete
- A body at rest may have

5.	The kinetic energy $\frac{1}{2}mv^2$, provided	possessed by a body of mass m moving with a velocity v is equal to
	(a) The body moves	s with velocities comparable to that of light
	(b) The body moves	s with velocities negligible compared to the speed of light
	(c) The body moves	s with velocities greater than that of light
	(d) None of the abo	ove statement is correcst
6.	If the momentum of	of a body is increased <i>n</i> times, its kinetic energy increases
	(a) n times	(b) 2n times
	(c) \sqrt{n} times	(d) n^2 times
7•	When work is done	e on a body by an external force, its
	(a) Only kinetic ene	ergy increases
	(b) Only potential e	energy increases
	(c) Both kinetic and	d potential energies may increase
	(d) Sum of kinetic a	nd potential energies remains constant
8.	The bob of a simp	le pendulum (mass m and length l) dropped from a horizontal position
	strikes a block of t	the same mass elastically placed on a horizontal frictionless table. The
	K.E. of the block wi	ill be
	(a) 2 <i>mgl</i>	(b) <i>mgl</i> /2
	(c) mgl	(d)0
9.	From a stationary	tank of mass 125000 pound a small shell of mass 25 pound is fired with
	a muzzle velocity o	of 1000 ft/sec. The tank recoils with a velocity of [NCERT 1973]
	(a) 0.1 ft/sec	(b) 0.2 ft/sec
	(c) 0.4 ft/sec	(d) 0.8 ft/sec
10.	_	explodes into two pieces of masses 4 kg and 8 kg . The velocity of 8 kg ne kinetic energy of the other mass is
		[MNR 1985; CPMT 1991; Manipal MEE 1995;
		Pb. PET 2004]
	(a) 48 <i>J</i>	(b) 32 <i>J</i>
	(c) 24 J	(d) 288 J
11.		1/20 th of its velocity in passing through a plank. The least number of ed just to stop the bullet is [EAMCET 1987; AFMC 2004]
	(a) 5	(b) 10
	(c) 11	(d) 20

(a) Energy

(c) Speed

(b) Momentum

(d) Velocity

- 12. A body of mass 2 kg is thrown up vertically with K.E. of 490 joules. If the acceleration due to gravity is $9.8 \, m \, / \, s^2$, then the height at which the K.E. of the body becomes half its original value is given by **[EAMCET 1986]**
 - (a) 50 *m* (b) 12.5 *m*
- (c) 25 *m* (d) 10 *m*
- 13. Two masses of 1 gm and 4 gm are moving with equal kinetic energies. The ratio of the magnitudes of their linear momenta is

[AIIMS 1987; NCERT 1983; MP PMT 1993; IIT 1980; RPET 1996; CBSE PMT 1997; Orissa JEE 2003; KCET 1999; DCE 2004]

- (a) 4:1 (b) $\sqrt{2}:1$ (c) 1:2 (d) 1:16
- 14. If the *K.E.* of a body is increased by 300%, its momentum will increase by [JIPMER 1978; AFMC 1993;

RPET 1999; CBSE PMT 2002]

- (a) 100% (b) 150%
- (c) $\sqrt{300}\%$ (d) 175%
- 15. A light and a heavy body have equal kinetic energy. Which one has a greater momentum?

 [NCERT 1974; CPMT 1997; DPMT 2001]
 - (a) The light body
 - (b) The heavy body
 - (c) Both have equal momentum
 - (d) It is not possible to say anything without additional information
- 16. If the linear momentum is increased by 50%, the kinetic energy will increase by

[CPMT 1983; MP PMT 1994; MP PET 1996, 99; UPSEAT 2001]

- (a) 50% (b) 100% (c) 125% (d) 25%
- 17. A free body of mass 8 kg is travelling at 2 meter per second in a straight line. At a certain instant, the body splits into two equal parts due to internal explosion which releases 16 joules of energy. Neither part leaves the original line of motion finally

[NCERT 1979]

- (a) Both parts continue to move in the same direction as that of the original body
- (b) One part comes to rest and the other moves in the same direction as that of the original body
- (c) One part comes to rest and the other moves in the direction opposite to that of the original body

(d) One part moves in the same direction and the other in the direction opposite to that of the original body			
If the K.E. of a particle is doubled, then its momentum will			
	[EAMCET 1979; CPMT 2003: Kerala PMT 2005]		
(a) Remain unchang	ged (b) Be doubled		
(c) Be quadrupled	(d) Increase $\sqrt{2}$ times		
If the stone is throw	wn up vertically and return to ground, its potential energy is maximum		
	[EAMCET 1979]		
(a) During the upwa	ard journey		
(b) At the maximum	n height		
(c) During the retur	n journey		
(d) At the bottom			
A body of mass 2 k	kg is projected vertically upwards with a velocity of $2m{ m sec}^{-1}$. The K.E. of		
the body just befor	re striking the ground is [EAMCET 1980]		
(a) 2 <i>J</i>	(b) 1 <i>J</i>		
(c) 4 <i>J</i>	(d) 8 J		
The energy stored i	in wound watch spring is		
	[EAMCET 1982]		
(a) K.E.	(b) P.E.		
	(d) Chemical energy		
Two bodies of diffe	erent masses m_1 and m_2 have equal momenta. Their kinetic energies E_1		
and E_2 are in the ra	atio		
	[EAMCET 1990]		
(a) $\sqrt{m_1} : \sqrt{m_2}$	(b) $m_1:m_2$		
(c) $m_2: m_1$	(d) $m_1^2:m_2^2$		
A car travelling at a	a speed of 30 $km/hour$ is brought to a halt in 8 m by applying brakes. If		
the same car is trav	velling at 60 km/hour, it can be brought to a halt with the same braking		
force in	[NCERT 1976]		
(a) 8 <i>m</i>	(b) 16 <i>m</i>		
(c) 24 <i>m</i>	(d) 32 <i>m</i>		
Tripling the speed of	of the motor car multiplies the distance needed for stopping it by		
[NCERT 1978]			
(a) 3	(b) 6		
(c) 9	(d) Some other number		
If the kinetic energ	gy of a body increases by 0.1%, the percent increase of its momentum		
will be	[MP PMT 1994]		

18.

19.

20.

21.

22.

23.

24.

25.

- (a) 0.05%
- (b) 0.1%
- (c) 1.0%
- (d) 10%
- 26. If velocity of a body is twice of previous velocity, then kinetic energy will become

[AFMC 1996] (a) 2 times

- (b) $\frac{1}{2}$ times
- (c) 4 times
- (d)1 times
- 27. Two bodies A and B having masses in the ratio of 3:1 possess the same kinetic energy. The ratio of their linear momenta is then [Haryana CEE 1996]

(a) 3:1

(b)9:1

(c) 1:1

- (d) $\sqrt{3}:1$
- 28. In which case does the potential energy decrease

[MP PET 1996]

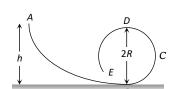
- (a) On compressing a spring
- (b) On stretching a spring
- (c) On moving a body against gravitational force
- (d) On the rising of an air bubble in water
- 29. A sphere of mass m, moving with velocity V, enters a hanging bag of sand and stops. If the mass of the bag is M and it is raised by height h, then the velocity of the sphere was

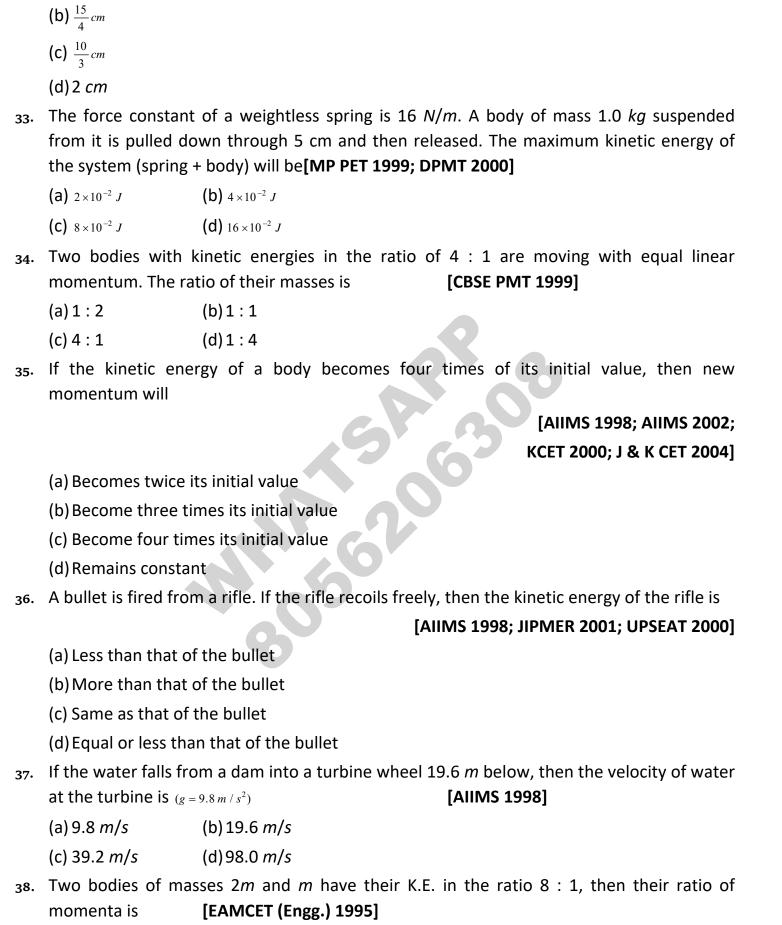
[MP PET 1997]

(a) $\frac{M+m}{m}\sqrt{2gh}$ (b) $\frac{M}{m}\sqrt{2gh}$ (c) $\frac{m}{M+m}\sqrt{2gh}$ (d) $\frac{m}{M}\sqrt{2gh}$

- 30. Two bodies of masses m and 2m have same momentum. Their respective kinetic energies E_1 and E_2 are in the ratio

[MP PET 1997; KCET 2004]


(a) 1:2


(b) 2:1

(c) $1:\sqrt{2}$

(d)1:4

- 31. If a lighter body (mass M_1 and velocity V_1) and a heavier body (mass M_2 and velocity V_2) have the same kinetic energy, then [MP PMT 1997]
 - (a) $M_2V_2 < M_1V_1$
- (b) $M_2V_2 = M_1V_1$
- (c) $M_2V_1 = M_1V_2$
- (d) $M_2V_2 > M_1V_1$
- 32. A frictionless track ABCDE ends in a circular loop of radius R. A body slides down the track from point A which is at a height h = 5 cm. Maximum value of R for the body to successfully complete the loop is [MP PMT/PET 1998]
 - (a) 5 *cm*

(a) 1:1

(b) 2 : 1

	(c) 4:1	(d)8:1	
39.	A bomb of 12 kg d	ivides in two parts whose ratio of masses is 1:3. If kinetic energy	of
	smaller part is 216.	, then momentum of bigger part in kg-m/sec will be [RPET 1997]	
	(a) 36	(b) 72	
	(c) 108	(d) Data is incomplete	
40.	_	1 kg mass are moving with equal kinetic energies. The ratio of the linear momenta is [CBSE PMT 1993; Orissa JEE 2003]	he
	(a) 1 : 2	(b) 1:1	
	(c) 2 : 1	(d)4:1	
41.	density $ ho$. The heig		he vo
		[SCRA 199	6]
	(a) $(h_1 - h_2)g\rho$ (c) $\frac{1}{2}(h_1 - h_2)^2 gA\rho$	(b) $(h_1 - h_2)gA\rho$	
	(c) $\frac{1}{2}(h_1 - h_2)^2 gA\rho$	(d) $\frac{1}{4}(h_1 - h_2)^2 gA\rho$	
42.	If the increase in the will be	e kinetic energy of a body is 22%, then the increase in the momentu	ım
		[RPET 1996; DPMT 200	0]
	(a) 22%	(b) 44%	
	(c) 10%	(d) 300%	
43.	the point of contac	00 g falls from a height 200 m and its total P.E. is converted into K.E. It of the body with earth surface, then what is the decrease in P.E. tact $(g = 10 m / s^2)$ [AFMC 1997]	
	(a) 200 <i>J</i>	(b) 400 <i>J</i>	
	(c) 600 J	(d) 900 J	
44.	If momentum is inc	reased by 20%, then K.E. increases by	
		[AFMC 1997; MP PMT 200	4]
	(a) 44%	(b) 55%	
	(c) 66%	(d) 77%	
45.	The kinetic energy (1998; DPMT 2000]	of a body of mass 2 kg and momentum of 2 Ns is [AFMC	
	(a) 1 <i>J</i>	(b) 2 <i>J</i>	
	(c) 3 <i>J</i>	(d) 4 J	

46. The decrease in the potential energy of a ball of mass 20 kg which falls from a height of 50 cm is [AIIMS 1997] (a) 968 J (b) 98 J (c) 1980 J (d) None of these 47. An object of 1 kg mass has a momentum of 10 kg m/sec then the kinetic energy of the object will be [RPMT 1999] (a) 100 J (b) 50 J(c) 1000 J (d) 200 J48. A ball is released from certain height. It loses 50% of its kinetic energy on striking the ground. It will attain a height again equal to [RPMT 2000] (a) One fourth the initial height (b) Half the initial height (c) Three fourth initial height (d) None of these 49. A 0.5 kg ball is thrown up with an initial speed 14 m/s and reaches a maximum height of 8.0m. How much energy is dissipated by air drag acting on the ball during the ascent [AMU (Med.) 2000] (a) 19.6 *Joule* (b) 4.9 *Joule* (C) 10 Joule (d) 9.8 *Joule* 50. An ice cream has a marked value of 700 kcal. How many kilowatt- hour of energy will it [AMU (Med.) 2000] deliver to the body as it is digested (a) 0.81 kWh **(b)** 0.90 kWh (d) 0.71 kWh (c) 1.11*kWh* 51. What is the velocity of the bob of a simple pendulum at its mean position, if it is able to [BHU 2000] rise to vertical height of 10 cm (Take $g = 9.8 m/s^2$) (a) $0.6 \, m/s$ (b) $1.4 \, m/s$ (c) $1.8 \, m/s$ (d) $2.2 \, m/s$ 52. A particle of mass 'm' and charge 'q' is accelerated through a potential difference of 'V' [UPSEAT 2001] volt. Its energy is (a) qV**(b)** mq V

(c) $\left(\frac{q}{m}\right)V$

(d) $\frac{q}{mV}$

	speeds up by $1m/s$ so as to have same $K.E.$ as that of the boy. The original speed of the				
	man will be	[Pb. PMT 2001]			
	(a) $\sqrt{2} m / s$				
	(c) $\frac{1}{(\sqrt{2}-1)}m/s$	(d) $\frac{1}{\sqrt{2}}m/s$			
54.		substances are $4gm$ and $9gm$ o of their momenta will be	respectively. If their kinetic energies are [CPMT 2001]		
	(a) 4:9	(b) 9:4			
	(c) 3:2	(d) 2:3			
55.	If the momentum	of a body is increased by 100	0%, then the percentage increase in the		
	kinetic energy is				
		[BHU 19	999; Pb. PMT 1999; CPMT 2000;		
			CBSE PMT 2001; BCECE 2004]		
	(a) 150%	(b) 200%	2 - 95		
	(c) 225%	(d) 300%			
56.	6. If a body looses half of its velocity on penetrating 3 cm in a wooden block, then how much will it penetrate more before coming to rest [AIEEE 2002; DCE 2002]				
	(a) 1 <i>cm</i>	(b) 2 cm			
	(c) 3 <i>cm</i>	(d) 4 cm			
57•	A bomb of mass 9k is 1.6 m/s, the K.E.		ass 3kg and 6kg. The velocity of mass 3kg [AIEEE 2002]		
	(a) 3.84 <i>J</i>	(b) 9.6 <i>J</i>	•		
	(c) 1.92 <i>J</i>	(d) 2.92 J			
58.		g and $16kg$ are moving with ϵ	equal K.E. The ratio of magnitude of the		
	(a) 1:2	(b) 1:4			
	(c) $1:\sqrt{2}$	(d) $\sqrt{2}:1$			
59.	A machine which is	5 75 percent efficient, uses 12	joules of energy in lifting up a 1 kg mass		
	through a certain	distance. The mass is then all	lowed to fall through that distance. The		
	velocity at the end	of its fall is (in ms ⁻¹)[Kerala PN	IT 2002]		
	(a) $\sqrt{24}$	(b) $\sqrt{32}$			
	(c) $\sqrt{18}$	(d) $\sqrt{9}$			
60.	Two bodies movin	g towards each other collide	and move away in opposite directions.		
	There is some rise	e in temperature of bodies b	pecause a part of the kinetic energy is		
	converted into	[BHU 2002]			

53. A running man has half the kinetic energy of that of a boy of half of his mass. The man

	(a) Heat energy	(b) Electrical energy			
	(c) Nuclear energy	(d) Mechanical energy			
61.	A particle of mass r	m at rest is acted upon by a force F for a time t . Its Kinetic energy aft	er		
	an interval <i>t</i> is				
		[Kerala PET 200	2]		
	(a) $\frac{F^2t^2}{m}$	(b) F^2t^2			
	$\frac{m}{m}$	$(\mathcal{S}) \frac{1}{2m}$			
	(c) $\frac{F^2t^2}{3m}$	(b) $\frac{F^2t^2}{2m}$ (d) $\frac{Ft}{2m}$			
62.		gy of a weight less spring compressed by a distance a is proportional t	O		
 -	[MP PET 2003]		•		
	(a) <i>a</i>	(b) a^2			
	(c) a^{-2}				
63.	• ,	s A and B, each of mass 'm' resting on smooth floor are connected by	, ,		
03.		ral length L and spring constant K, with the spring at its natural length			
		ock C' (mass M) moving with a speed V along the line joining A and			
		maximum compression in the spring is [EAMCET 2003]			
	(a) $v\sqrt{\frac{m}{2k}}$	(b) $m\sqrt{\frac{v}{2k}}$			
	(c) $\sqrt{\frac{mv}{k}}$	(d) $\frac{mv}{2k}$			
	• ~	2K			
64.		sses m and 4 m are moving with equal K.E. The ratio of their line	ar		
	momentums is	Towins IEE 2002 AUMS 400	1		
	(-) A . A	[Orissa JEE 2003; AIIMS 199	[פי		
	(a) 4 : 1	(b) 1 : 1			
	(c) 1 : 2	(d) 1:4			
65.	A stationary particle explodes into two particles of a masses m_1 and m_2 which move in				
	opposite directions	with velocities v_1 and v_2 . The ratio of their kinetic energies E_1/E_2 is			
		[CBSE PMT 200	3]		
	(a) m_1 / m_2	(b) 1			
	(c) $m_1 v_2 / m_2 v_1$	(d) m_2 / m_1			
66.	The kinetic energy	of a body of mass 3 kg and momentum 2 Ns is [MP	,		
	PET 2004]				
	(a)1 <i>J</i>	(b) $\frac{2}{3}J$			
	(c) $\frac{3}{2}J$	(d) 4 J			
	<u> </u>				

	(a)1.07 <i>kJ</i>	(b) 2.14 <i>kJ</i>					
	(c) 2.4 <i>kJ</i>	(d) 4.8 <i>kJ</i>					
68.	58. A bullet moving with a speed of 100 $_{ms^{-1}}$ can just penetrate two planks of equal thickn						
	Then the number of such planks penetrated by the same bullet when the speed is doubled						
	will be	[KCET 2004]					
	(a)4	(b) 8					
	(c)6	(d) 10					
69.	A particle of mass	m_1 is moving with a velocity v_1 and another particle of mass m_2 is moving					
	with a velocity v_2 .	Both of them have the same momentum but their different kinetic					
	energies are E_1 and	E_2 respectively. If $m_1 > m_2$ then [CBSE PMT 2004]					
	(a) $E_1 < E_2$	(b) $\frac{E_1}{E_2} = \frac{m_1}{m_2}$					
	(c) $E_1 > E_2$	(d) $E_1 = E_2$					
70.	A ball of mass 2kg	g and another of mass $4kg$ are dropped together from a 60 $feet$ tall					
	building. After a fal	I of 30 feet each towards earth, their respective kinetic energies will be					
	in the ratio of	[CBSE PMT 2004]					
	(a) $\sqrt{2}:1$	(b) 1:4					
	(c) 1:2	(d) $1:\sqrt{2}$					
71.	Four particles giver	n, have same momentum which has maximum kinetic energy					
	[Orissa PMT 200						
	(a)Proton	(b) Electron					
	(c) Deutron	(d) α -particles					
72.	A body moving with	h velocity v has momentum and kinetic energy numerically equal. What					
	is the value of <i>v</i>						
		[Pb. PMT 2002; J&K CET 2004]					
	(a)2 <i>m/s</i>	(b) $\sqrt{2}m/s$					
	(c)1 <i>m/s</i>	(d) 0.2 m/s					
73.	If a man increase hi [Pb. PET 2002]	is speed by 2 m/s, his K.E. is doubled, the original speed of the man is					
	(a) $(1+2\sqrt{2}) m / s$	(b) 4 <i>m/s</i>					
	(c) $(2+2\sqrt{2})m/s$	(d) $(2+\sqrt{2}) m / s$					

67. A bomb of mass 3.0 Kg explodes in air into two pieces of masses 2.0 kg and 1.0 kg. The

smaller mass goes at a speed of 80 m/s. The total energy imparted to the two fragments is

[AIIMS 2004]

74.	An object of mass $3m$ splits into three equal fragments. Two fragments have velocities $\sqrt{2}$ and $\sqrt{2}$. The velocity of the third fragment is [UPSEAT 2004]					
	(a)	$v(\hat{j}-\hat{i})$	(b)	$v(\hat{i}-\hat{j})$		
	(c) $-v(\hat{i}+\hat{j})$	(d) $\frac{v(\hat{i}+\hat{j})}{\sqrt{2}}$				
75.	A bomb is kept stationary at a point. It suddenly explodes into two fragments of masses g and $3 g$. The total K.E. of the fragments is $6.4 \times 10^4 J$. What is the K.E. of the smalle					
	fragment [DCE 2004]					
	(a) $2.5 \times 10^4 J$	(b) $3.5 \times 10^4 J$				
	(c) $4.8 \times 10^4 J$	(d) $5.2 \times 10^4 J$				
76.	Which among the f	ollowing, is a for	m of ener	gy [DCI	E 2004]	
	(a)Light	(b) Pressure				
	(c) Momentum	(d) Power				
77•	A body is moving with a velocity v , breaks up into two equal parts. One of the part retraces back with velocity v . Then the velocity of the other part is [DCE 2004]					
	(a)v in forward dire	ection	(b)	3v in forwa	ard direction	
	(c) v in backward d	irection	(d)	3v in back	ward direction	
78.	If a shell fired from	a cannon, explo	des in mid	d air, then		
	[Pb. PET 2004]					
	(a)Its total kinetic energy increases					
	(b) Its total momentum increases					
	(c) Its total momentum decreases					
	(d)	None of these				
79.	9. A particle of mass m moving with velocity $v_{\scriptscriptstyle 0}$ strikes a simple pendulum of mass m and					
	sticks to it. The maximum height attained by the pendulum will be [RPET 2002]					
	(a) $h = \frac{V_0^2}{8g}$	(b) $\sqrt{V_0 g}$				
	(c) $2\sqrt{\frac{V_0}{g}}$	(b) $\sqrt{V_0 g}$ (d) $\frac{V_0^2}{4g}$				
80.	80. Masses of two substances are 1 g and 9 g respectively. If their kinetic energies are sai				If their kinetic energies are same,	
	then the ratio of their momentum will be [BHU 2004]					
	(a) 1:9	(b)9:1				

81. A body of mass 5 kg is moving with a momentum of 10 kg-m/s. A force of 0.2 N acts on it in the direction of motion of the body for 10 seconds. The increase in its kinetic energy is

(d)1:3

(c) 3:1

(a) 2.8 Joule

(b) 3.2 Joule

(c) 3.8 Joule

(d) 4.4 Joule

82. If the momentum of a body increases by 0.01%, its kinetic energy will increase by

[MP PET 2001]

(a) 0.01%

(b) 0.02%

(c) 0.04%

(d) 0.08%

83. 1 a.m.u. is equivalent to

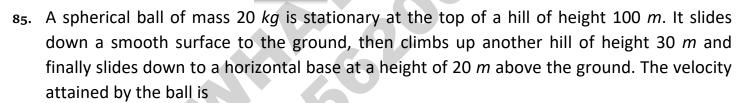
[UPSEAT 2001]

(a) 1.6×10^{-12} Joule

(b)
$$1.6 \times 10^{-19}$$
 Joule

(c) 1.5×10^{-10} *Joule*

(d)
$$1.5 \times 10^{-19}$$
 Joule


84. A block of mass m initially at rest is dropped from a height h on to a spring of force constant k. the maximum compression in the spring is x then [BCECE 2005]

(a)
$$mgh = \frac{1}{2}kx^2$$

(b)
$$mg(h+x) = \frac{1}{2}kx^2$$

(c)
$$mgh = \frac{1}{2}k(x+h)^2$$

(d)
$$mg(h+x) = \frac{1}{2}k(x+h)^2$$

[AIEEE 2005]

(a) 10 m/s

(b) $10\sqrt{30} \ m/s$

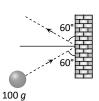
(c) $40 \, m/s$

(d) $20 \, m/s$

86. The block of mass *M* moving on the frictionless horizontal surface collides with the spring of spring constant *K* and compresses it by length *L*. The maximum momentum of the block after collision is [AIEEE 2005]

(a) Zero

(b) $\frac{ML^2}{K}$



(c) $\sqrt{MK} L$

87. A bomb of mass 30kg at rest explodes into two pieces of masses 18kg and 12kg. The velocity of 18kg mass is $6ms^{-1}$. The kinetic energy of the other mass is

- (a) 256 J
- (b) 486 J
- (c) 524 J
- (d) 324 J
- 88. A mass of 100g strikes the wall with speed 5m/s at an angle as shown in figure and it rebounds with the same speed. If the contact time is 2×10^{-3} sec, what is the force applied on the mass by the wall [Orissa JEE 2005]
 - (a) $250\sqrt{3}$ N to right
 - (b) 250 N to right
 - (c) $250\sqrt{3}$ N to left
 - (d) 250 N to left

