Exercise # 2

SINGLE OBJECTIVE

AIIMS LEVEL

- Pick out among the following species isoelectronic 1. with CO₃.
 - $(A) N_3^-$
- (B) (CNO)
- (C) $(NCN)^{2-}$
- (D) All of these
- 9.

12.

- The correct order of increasing C-O bond length of 2. CO, CO₃²⁻, CO₂ is:
 - (A) $CO_3^{2-} < CO_2 < CO$ (B) $CO_2 < CO_3^{2-} < CO$ (C) $CO < CO_3^{2-} < CO_2$ (D) $CO < CO_2 < CO_3^{2-}$
- **10.**
- The average charge on each O atom and average 3. bond order of I–O bond in IO_6^{5-} is :
 - (A) 1 and 1.67
- **(B)** -5/6 and 1.67
- (C) -5/6 and 1.33
- **(D)** -5/6 and 1.167
- -O The relation between x, y and z in 4.
 - bicarbonate ion with respect to bond length is:
 - (A) x>y>z
- (B) x > z > y
- (C)z=y>x
- (D) x > y = z
- 5. Indicate the wrong statement:
 - (A) A sigma bond is stronger then π bond
 - (B) p-orbitals always have only sidewise overlapping
 - (C) s-orbitals never form π bonds
 - (D) There can be only one sigma bond between two atoms
- C₃⁴⁻ has 6.
 - (A) two σ and two π bond
 - (B) three σ and one π bond
 - (C) two σ and one π bond
 - (D) two σ and three π bond
- How many bonds are there in 7.

(A) 13

(B) 23

(C)20

- **(D)** 26
- Which of the following overlaps is **incorrect** 8. [assuming z-axis to be the internuclear axis]?
 - (A) $2 p_v + 2 p_v \rightarrow \pi 2 p_v$
 - (B) $2 p_z + 2 p_z \rightarrow \sigma 2p_z$
 - (C) $2 p_x + 2 p_x \rightarrow \pi 2 p_x$
 - (D) $1 s + 2 p_v \rightarrow \pi (1 s 2 p_v)$

- (A) 'a' & 'b'
- (B) 'b' & 'd'
- (C) only 'd'
- (D) None of these

Effective overlapping will be shown by:

- (A) (D) + (D)
- (B) \(\Prec{\Preceq}{2}\) +\(\Preceq\)
- (C) ⊕⊙+⊙⊕
- (D) All the above

The covalency of nitrogen in HNO₃ is

(A)0

(B) 3

(C)4

(D) 5

11. What is covalency of I in IF_7 ?

(A)5

(C) 7

(D) 1

In which of the following N is in the sp² hybridisation state

- (A) $(CH_3)_3N$
- (B) CH₃CONH₂
- (C) CH₂CN
- (D) NO₂⁺

13. In pent-3-en-1-yne the terminal carbon-atoms have following hybridisation

- (A) sp & sp²
- **(B)** $sp^2 \& sp^3$
- (C) $sp^2 \& sp$
- (D) sp & sp 3

14. Identify the correct match.

- (i) XeF₂
- (A) Central atom has sp³ hybridisation and bent geometry.
- $(ii) N_3^-$
- (B) Central atom has sp³d² hybridisation and octahedral.
- (iii) PCl₆ (PCl₅ (s) anion)
- (C) Central atom has sp hybridisation and linear geometry.
- (iv) $ICl_2^+(I_2Cl_6(\ell) \text{ cation})$
- (D) Central atom has sp³d hybridisation and linear geometry.
- (A) (i-a), (ii-b), (iii-c), (iv-d)
- (B) (i-d), (ii-b), (iii-d), (iv-c)
- (C) (i-b), (ii-c), (iii-a), (iv-d)
- (D) (i-d), (ii-c), (iii-b), (iv-a)

- 15. Which of the following statement is true for $IO_2F_2^-$?
 - (A) The electrons are located at the corners of a trigonal bipyramidal but one of the equatorial pairs is unshared.
 - (B) It has sp³d hybridisation and is T-shaped.
 - (C) Its structure is analogous to SF₄.
 - (D) (A) and (C) both
- **16.** Consider the following molecules ;

H_2O	H_2S	H_2Se	H_2 Te
I	II	Ш	IV

Arrange these molecules in increasing order of bond angles.

- (A) I < II < III < IV
- (B) IV < III < II < I
- (C) I < II < IV < III
- (D) II < IV < III < I
- 17. In which of the following bond angle is maximum
 - (A) NH₃
- (B) NH_{4}^{+}
- (C) PCl₃
- (D) SnCl₂
- **18.** Consider the following statement and arrange in the order of true / false.
 - S_1 : In $SnCl_2$ the bonding takes place in ground state and the bond angle Cl–Sn–Cl is slightly less than 120° .
 - S_2 : The molecular geometry of XeF_7^+ is pentagonal bipyramidal having two different Xe–F bond lengths.
 - S_3 : In SF_4 , the bond angles, instead of being 90° and 180° are 89° and 177° respectively due to the presence of a lone pair.
 - (A) T T T
- (B) F T T
- (C) T T F
- (**D**) T F T
- 19. Consider the following statements
 - 1. Steric number '7' gives 'sp³d³ hybridisation.
 - 2. In $C\ell F_3$ at least one bond angle is exactly 180°
 - 3. Lone pair does not cause any distortion in the bond angle.

The above statements 1, 2, 3 respectively are

(T = True, F = False)

- (A) TFF
- **(B)** T T F
- (C) FTF
- (D) TTT
- **20.** Which one has highest bond angle.
 - (A) NH₃
- (B) PH₃
- (C) H₂O
- (D) CH_4

21. In the thiocyanate ion, SCN⁻ three resonating structure are possible with the electron-dot method as shown in figure

The decreasing order of % contribution in resonance hybrid is:

(A) y > x > z

(z)

- (B) y > z > x
- (C)z>x>y
- (D) cannot predicted.
- 22. The correct order of C–N bond length in the given compounds is:

 $P: CH_3CN$

O: HNCO

 $R: CH_3CONH_2$

- (A) P > Q > R
- **(B)** P = Q = R
- (C) R > Q > P
- (D) R > P > Q
- 23. Which of the following statements is not correct for sigma and pi bond formed between two carbon atoms?
 - (A) Free rotation of atoms about a sigma bond is allowed but not in case of a pi-bond
 - (B) Sigma -bond determines the direction between carbon atoms but a pi-bond has no primary effect in this regard
 - (C) Sigma-bond is stronger than a pi-bond
 - (D) Bond energies of sigma- and pi-bonds are of the order of 264 kJ/mol and 347 kJ/mol. respectively.
- 24. Number and type of bonds between two carbon atoms in CaC₂ are:
 - (A) one sigma (σ) and one pi (π) bond
 - **(B)** one σ and two π bonds
 - (C) one σ and one and a half π bond
 - (D) one σ bond
- 25. The number of σ and π bonds in dicyanogen (CN)₂ are :
 - (A) $2\sigma + 3\pi$
- (B) $3\sigma + 2\pi$
- (C) $3\sigma + 4\pi$
- (D) $4\sigma + 3\pi$
- **26.** Indicate the incorrect statement :
 - (A) An 'sp' hybrid orbital is not lower in energy than both s- and p-orbitals
 - (B) 2p_x and 2p_y orbitals of carbon can be hybridized to yield two new more stable orbitals
 - (C) Effective hybridisation is not possible with orbitals of widely different energies
 - (D) The concept of hybridisation has a greater significance in the VB theory of localised orbitals than in the MO theory.

CHEMISTRY FOR NEET & AIIMS

27.	The correct order of increasing s character (in
	percentage) in the hybrid orbitals in below molecules
	/ ions is (assume all hybrid orbitals are exactly
	equivalent):

CO_3^2	XeF_4	I_3^-
NCl ₃	$BeCl_2(g)$	
I	I	${\rm 1\! I}$
N	V	

- $(A) \parallel < \parallel \parallel < \parallel \lor < \mid \lor \lor \lor$
- (B) II < IV < III < V < I
- $(D) \coprod < IV < \coprod < I < V$
- 28. Which of the following contains both electrovalent and covalent bonds?
 - (A) CH₄
- (B) H₂O₂
- (C) NH₄Cl
- (D) none
- 29. In the following which substance will have highest boiling point
 - (A) He
- (B) CsF
- (C) NH₃
- (D) CHCl₃
- **30.** Arrange the following in order of decreasing N - O37. bond length: NO₂⁺, NO₂⁻, NO₃⁻
 - (A) $NO_3^- > NO_2^+ > NO_2^-$
 - (B) $NO_3^- > NO_2^- > NO_2^+$
 - (C) $NO_2^+ > NO_3^- > NO_2^-$
 - (D) $NO_2^- > NO_3^- > NO_2^+$
- 31. sp³d hybridization is considered to be a combination of two hybridization. They are
 - (A) $p^3 + sd$
 - **(B)** $sp^2 + pd$
 - (C) $\operatorname{spd} + p^2$
 - (D) none of these
- 32. Which of the following should have pyramidal shape
 - (A) $[ClOF_2]^+$
 - (B) ICl₃
 - (C) [BrICl]
 - (D) All of these

- 33. The maximum Covalency forrepresentative elements is equal to (excluding 1st and 2nd period)
 - (A) the number of unpaired p-electrons
 - (B) the number of paired d-electrons
 - (C) the number of unpaired s and p-electrons
 - (D) the actual number of s and p-electrons in the outermost shell.
 - Which of the following are not characteristics of metallic solids?
 - (A) high electrical conductivity
 - (B) malleable and ductile

34.

35.

36.

38.

39.

40.

- (C) the free electrons give them lustrous appearance
- (D) electrical conductivity increases on increasing temperature
- Two element have electronegativity of 1.2 and 3.0. Bond formed between them would be:
- (A) more ionic
- (B) polar Covalent
- (C) co-ordinate
- (D) metallic
- Which of the following overlaps gives a σ bond with x as internuclear axis?
- (A) p_z and p_z
- (B) s and p_{α}
- (C) s and p_x
- (D) $d_{x^2-v^2}$ and $d_{x^2-v^2}$
- Which of the statements is correct about SO₂?
- (A) two σ , two π and no lone pair of electrons
- (B) two σ and one π
- (C) two σ , two π and one lone pair
- (D) none of these
- Which of the following is **true** statement?
- (A) All the carbon in $H_2C = C C \equiv C C = CH_2$ are H
- in sp² hybridisation.
- **(B)** In $C_2H_2(CN)_2$ there are six ' σ ' bonds.
- (C) In C_2H_6 , all C are sp² hybridized
- (D) In C_3O_2 all the carbons are in sp hybridisation.
- Correct order of bond energy of C-O bond is:
- (A) $CO_3^{2-} > CO_2 > CO$ (B) $CO_2 > CO > CO_3^{2-}$
- (C) $CO > CO_2 > CO_3^{2-}$ (D) None of these.
- For hydrazoic acid, which of the following resonating structure will be least stable?

$$H - N = N^{+} = N^{-} \longleftrightarrow H - N^{+} - N^{+} = N^{2-} \longleftrightarrow H - N^{-} - N^{+} \circ N$$
(I) (III) (III)

(A) I

- **(B)** I I
- (C) IIF
- (D) Both (I) and (III)

41. The correct order of increasing s character (in percentage) in the hybrid orbitals in below molecules / ions is (assume all hybrid orbitals are exactly equivalent):

> SnCl₂ XeF₄ I_3^- NCl₂ HgCl₂(g) Ι Ш IV

- $(A) \parallel < \parallel \parallel < \parallel \lor < \mid \lor \lor \lor$
- (B) II < IV < III < V < I
- (C) III < II < I < V < IV
- $(D) \coprod < \coprod \lor < \coprod \lor \lor \lor$
- The hybrid state of positively charged carbon in **42.** vinyl cation ($CH_2 = CH$) is:
 - (A) Unpredicatable
- $(\mathbf{B}) \mathrm{sp}^2$

(C) sp

- (\mathbf{D}) sp³
- If the equatorial plane is x-y plane in sp^3d 43. hybridisation then the orbital used in pd hybridisation are -
 - (A) p_z and d_z^2
- (C) p_v and d_{vz}
- (B) p_x and d_{xy}(D) none of these
- 44. Incorrect order about bond angle is:
 - (A) $H_2O > H_2S > H_2Se > H_2Te$
 - **(B)** $C_2H_2 > C_2H_4 > CH_4 > NH_3$
 - (C) $SF_6 < NH_3 < H_2O < OF_2$
 - (D) $ClO_2 > H_2O > H_2S > SF_6$
- 45. In the structure of H₂CSF₄, to decide the plane in which C = S is present the following bond angle values are given

Axial FSF angle (idealised = 180°) 170° Equatorial FSF angle (idealised = 120°) \Rightarrow 97° After deciding the plane of double bond, which of the following statement is/are correct?

- (A) two C-H bonds are in the same plane of axial S - F bonds
- (B) two C H bonds are in the same plane of equatorial S - F bonds
- (C) total five atoms are in the same plane
- (D) equatorial S F bonds are perpendicular to plane of π-bond
- 46. The bond length in LiF will be
 - (A) less than that of NaF
 - (B) equal to that of KF
 - (C) more than that of KF
 - (D) equal to that of NaF

- S1: Oxidation number of N in N_2O_5 is 5 **47.**
 - **S2**: The anhydride of Hypochlorous acid is Cl₂O
 - S3: As the electronegativity of central atom in a molecule having same hybridisation state and same terminal atoms increases, bond angle increases.
 - S4: For heteronuclear diatomic species A B, the bond length decreases as the difference in electronegativity values increases.
 - (A) TTTF
- (B) FTTT
- (C) FFTF

48.

- (D) TTFT
- In the cation [H–C–N–Xe–F]⁺ which is linear, the hybridisations of C, N & Xe atoms respectively are
 - (A) sp, sp, sp
- (B) sp, sp², sp³d
- (C) sp, sp, sp^3d
- (D) sp^2 , sp, sp^3d
- 49. The structure of $IO_2F_2^-$ is analogous to :
 - (A) SF₄
- (B) XeO₂F₂
- (C) F₂SeO₂
- (D) (A) and (B) both
- **50.** Which of the following about SF₄, SOF₄ and OCF₂ molecules is correct.
 - (A) Equitorial FSF bond angle in SOF₄ will be greater than in SF₄ molecule
 - (B) Hybridisation states of sulphur in SF₄ and SOF₄ molecules will be different.
 - (C) The bond angle FCO will be < 120° in molecule OCF,
 - (D) The axial FSF bond angle in SF₄ is exactly 180°
 - Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) < 109.5°?
 - (A) SF₂
- (C) ICl₄
- (B) KrF₄(D) All of these
- **52.** For B₂H₆

53.

- S1: Each boron is sp³ hybridised
- S2: from terminal 'H' & two 'B' atom are in same plane but two bridge hydrogen in different plane.
- S3: It has 4σ bond & 2 bridge bond
- S4: 8σ bonds are present in it
- (A) TTFF
- (B) TTTF
- (C) F F T F
- (D) FTFT
- Which combination is best explained by the co-ordinate covalent bond
 - (A) $H^+ + H_2O$
- (B) Cl + Cl
- (C) Mg + $\frac{1}{2}$ O₂
- **(D)** $H_2 + I_2$

CHEMISTRY FOR NEET & AIIMS

54.	Which of the following contains a coordinate covalent bond		62.	Respective order of strength of back-bonding and Lewis acidic strength in boron trihalides is:				
	(A)HNO ₃ (C) HCl	(B) BaCl ₂ (D) H ₂ O		(A) BF ₃ < BCl ₃ < BBr ₃ and BF ₃ < BCl ₃ < BBr ₃ (B) BF ₃ > BCl ₃ > BBr ₃ and BF ₃ > BCl ₃ > BBr ₃				
55.	Bonds present in CuSO ₄ . 5H ₂ O(s) is (A) Electrovalent and covalent (B) Electrovalent and coordinate (C) Electrovalent, covalent and coordinate (D) Covalent and coordinate			(C) BF ₃ > BCl ₃ > BBr ₃ and BF ₃ < BCl ₃ < BBr ₃ (D) BF ₃ < BCl ₃ < BBr ₃ and BF ₃ > BCl ₃ > BBr ₃				
			63.	If Z-axis is the molecular axis, then π -molecular orbitals are formed by the overlap of (A) $s + p_z$ (B) $p_x + p_y$ (C) $p_z + p_z$ (D) $p_x + p_x$				
56.	Identify the species (A) (BeH ₂) _n (C) (AlCl ₃) ₂	containing Banana bonds (B) BF ₃ (D) (BeCl ₂) _n	64.	The common features of the species N ₂ ²⁻ , O ₂ and NO ⁻ are: (A) bond order three and isoelectronic. (B) bond order two and isoelectronic. (C) bond order three but not isoelectronic. (D) bond order two but not isoelectronic. Which of the following molecular orbitals has two nodal planes				
57.	Which is not true at (A) Both 'B' atoms (B) Boron atom is in	are sp ³ hybridised						
	· · ·	occupy special positions ree centre two electron bonds	65.					
58.	Which of the followi (dative) bond	ng compounds has coordinate		$(A) \sigma 2s$ $(C) \pi^* 2p_y$	$\begin{array}{c} \textbf{(B)} \ \pi 2p_y \\ \textbf{(D)} \ \sigma^* 2p_x \end{array}$			
	(A) CH ₃ NC (C) CH ₃ Cl	(B) CH ₃ OH (D) NH ₃	66.	During the formation of a molecular orbital from atomic orbitals of the same atom, probability of				
59.	 Which of the following statements regarding the structure of SOCl₂ is not correct? (A) The sulphur is sp³ hybridised and it has a tetrahedral shape. (B) The sulphur is sp³ hybridised and it has a trigonal pyramid shape. (C) The oxygen -sulphur bond is pπ - dπ bond. (D) It contain one lone pair of electrons in the sp³ hybrid orbital of sulphur. 			electron density is (A) none zero in the nodal plane (B) maximum in the nodal plane (C) zero in the nodal plane (D) zero on the surface of the lobe				
			67.	Bond order is a concept in the molecular orbital theory. It depends on the number of electrons in the bonding and antibonding orbitals. Which of the following statements is true about it? The bond order (A) Can have a negative quantity (B) Has always an integral value (C) Can assume any positive or integral or fractional value including zero (D) Is a non zero quantity Which of the following pairs have identical values				
						60.	~	For BF ₃ molecule which of the following is true? (A) B-atom is sp ² hybridised.
	 (B) There is a Pπ−Pπ back bonding in this molecule. (C) Observed B−F bond length is found to be less than the expected bond length. (D) All of these For BF₃ molecule which of the following will not be true (A) It has less bond length than BF₄⁻ (B) It has less bond length than the compound [NH₃ → BF₃] 		68. 69.					
						61.	of bond order? (A) N_2^+ and O_2^+ (B) F_2 and Ne_2 (C) O_2 and B_2 (D) C_2 and N_2	
Which of the following molecules /ions exhibit sp mixing?								
dπ back bonding				-			(A) B ₂ (C) O ₂ ⁺	(B) C ₂ ²⁻ (D) Both (A) and (B)
(D) It forms DE - when hydrolysed in water					· * 4			

(D) It forms $\mathrm{BF_4}^-$ when hydrolysed in water.

CHEMICAL BONDING

- 70. Among the following species, which has the minimum bond length?
 - $(\mathbf{A})\,\mathbf{B}_2$
- $(\mathbf{B}) \, \mathbf{C}_2$
- $(\mathbf{C}) \mathbf{F}_2$
- (D) O_2^{-1}
- **71.** Which of the following species is paramagnetic?
 - (A) NO
- **(B)** O_2^{2-}
- (C) CN⁻
- **(D)** CO
- 72. The following molecules / species have been arranged in the order of their increasing bond orders, Identify the correct order.
 - $(I) O_2; (II) O_2^-; (III) O_2^{2-}; (IV) O_2^+$
 - (A) III < II < I < IV
- (B) IV < III < II < I
- (C) | | | < | | < | | < | |
- (D) | | < | | | < | V
- **73.** Which of the following statements is incorrect?
 - (A) Among ${\rm O_2}^+, {\rm O_2}$ and ${\rm O_2}^-$ the stability decreases as ${\rm O_2}^+ > {\rm O_2} > {\rm O_2}^-$
 - **(B)** He₂ molecule does not exist as the effect of bonding and anti-bonding orbitals cancel each other
 - (C) C_2 , O_2^{2-} and Li_2 are diamagnetic
 - **(D)** In F_2 molecule, the energy of σ_{2p_z} is more than

 π_{2p_x} and π_{2p_y}

- Which one is paramagnetic from the following
- $(A) O_2^-$

74.

75.

76.

- (B) NO
- (C) Both (A) and (B)
- (D) CN⁻
- Which of the following orders is correct in respect of bond dissociation energy?
- (A) $N_2^+ > N_2^-$
- **(B)** $O_2^+ > O_3$
- $(C) NO^+ > NO$
- (D) All of those
- Which of the following statement is incorrect?
 - (A) During N_2^+ formation, one electron is removed from the bonding molecular orbital of N_2 .
 - (B) During O_2^+ formation, one electron is removed from the antibonding molecular orbital of O_2 .
 - (C) During O₂ formation, one electron is added to the bonding molecular orbital of O₂.
 - (D) During CN⁻ formation, one electron is added to the bonding molecular orbital of CN.