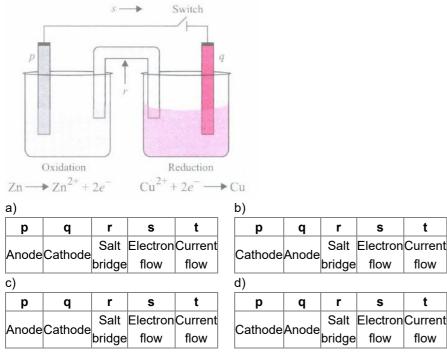


RAVI MATHS TUITION CENTRE, WHATSAPP - 8056206308


Time: 125 Mins	CHEMISTRY TEST 29 REDOX REACTION 1	Marks : 293

ne : 125 Mins	CHEMISTRY TEST 29 REDUX REACTION 1	Marks : 293
· ·	in increasing order of oxidation state of N fro < NO b) N ₂ O < NO< N ₂ O ₃ < NO ₂ < N ₂ O ₅	
$\mathrm{aZn} + \mathrm{bNO_3^-} + \mathrm{cH^+} ightarrow \mathrm{dNH}$	balanced by which set of coefficients? $ m H_4^+ + eH_2O + fZn^{2+}$ 2 c) 4 2 10 1 3 4 d) 4 1 10 1 3 4	
3. Which of the following is decom	nposition reaction?	

- - a) $2HgO \rightarrow 2Hg + O_2$ b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ c) $S + O_2 \rightarrow SO_2$ d) $CI_2 + 2KBr \rightarrow 2KCI + Br_2$
- 4. The oxidation number of phosphorus in pyrophosphoric acid is:
 - a) +3 b) +1 c) +4 d) +5
- 5. When Cl₂ reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from:
 - a) Zero to + 1 and Zero to 5 b) Zero to -1 and Zero to +5 c) Zero to -1 and Zero to +3
 - d) Zero to + 1 and Zero to -3
- 6. All elements commonly exhibit an oxidation state of
 - b) -1 c) zero d) +2
- 7. Which of the following chemical reactions depicts the oxidising behaviour of H₂SO₄?
 - a) $2PCI_5 + H_2SO_4 \rightarrow 2POCI_3 + 2HCI + SO_2CI_2$ b) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O_4 + 2H_2$
 - c) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$ d) $2Hl + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$
- 8. Which of the following is a redox reaction?
 - a) Reaction of H₂SO₄ with NaOH b) In atmosphere, formation of O₃ from O₂ by lightening
 - c) Formation of oxides of nitrogen from nitrogen and oxygen by lightening d) Evaporation of H₂O
- 9. The element that always exhibits a negative oxidation state in its compounds is
 - a) Nitrogen b) Oxygen c) Fluorine d) Chlorine
- 10. A mixture of potassium chlorate, oxalic acid and sulpluric acid is heated. During the reaction which element undergoes maximum change in the oxidation number?
 - a) S b) H c) CL d) C
- 11. Which of the following involves a redox reaction?
 - a) Reaction of H₂SO₄ with NaOH b) Production of ozone from oxygen in the atmosphere by lightning
 - c) Production of nitrogen oxides from nitrogen and oxygen in the atmosphere by lightning
 - d) Evaporation of water
- 12. In the preparation of HNO₃, we get NO gas by catalytic oxidation of ammonia. The moles of NO produced by the oxidation of two moles of NH3 will be:
 - a) 2 b) 3 c) 4 d) 6
- 13. The reaction is balanced if, $5H_2O_2$ + $XCIO_2$ + $2OH^- \rightarrow XCI^-$ + YO_2 + $6H_2O$
 - a) X = 5, Y = 2 b) X = 2, Y = 5 c) X = 4, Y = 10 d) X = 5, Y = 5
- 14. Which compound amongst the following has the highest oxidation number of Mn?
 - a) $KMnO_4$ b) K_2MnO_4 c) MnO_2 d) Mn_2O_3
- 15. Co-ordination number and oxidation state of Cr in $K_3[Cr(C_2O_4)_3]$ are, respectively
 - a) 3 and + 3 b) 3 and 0 c) 6 and + 3 d) 4 and + 2
- 16. Which of the following reactions will not take place at cathode?
 - a) $Ag^+ o Ag-e^-$ b) $Fe^{2+} o Fe^{3+}+e^-$ c) $Cu^{2+}+2e^- o Cu$ d) $Al^{3+} o Al-3e^-$

17. The standard E^0 values of few redox couples are $Zn^{2+}/Zn = -0.76$ V, $Ag^+/Ag = +0.80$ V, $Cu^{2+}/Cu = 0.34$ V. Choose
the correct option.
a) Ag can oxidise Zn and Cu b) Ag can reduce Zn^{2+} and Cu^{2+} . c) Zn can reduce Ag^{+} and Cu^{2+} .
d) Cu can reduce Zn ²⁺ and Ag ⁺ .
18. What will be the products of electrolysis of AgNO ₃ solution in water with platinum electrodes?

- a) Ag is liberated at cathode and Ag is deposited in anode
- b) Ag is liberated at cathode and O2 is liberated at anode.
- c) Ag is liberated at anode and water is liberated at cathode.
- d) Ag is liberated at cathode and silver oxide is liberated at anode.
- 19. In the conversion of K₂Cr 207 to K₂CrO₄ the oxidation number of the following changes
 - a) K b) Cr c) Oxygen d) None
- 20. In estimation of Fe^{2+} by $KMnO_4$, HNO_3 cannot be used in place of H_2SO_4 because
 - a) HNO₃ oxidised Fe²⁺ b) HNO₃ reduces MnO₄⁻ c) HNO₃ reduces Fe²⁺ d) HNO₃ oxidised Mn²⁺
- 21. What mass of HNO₃ is needed to convert 5 g of iodine into iodic acid according to the reaction? (at mass of I = 127 u)
 - a) 12.4g b) 24.8g c) 0.24g d) 49.6g
- 22. The eq.wt of iodine in, $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$ is equal to:
 - a) mol.wt b) mol.wt/2 c) mol. wt/4 d) none of these
- 23. Given below is the set up for Daniell cell. Label p, q, r, s, t in the given figure.

24. What are the oxidation states of phosphorus in the following compounds? H₃PO₂, H₃PO₄, Mg₂P₂O₇, PH₃, HPO₃

- 25. The equivalent mass of iron in Fe₂O₃ would be
 - a) 18.6 b) 28 c) 56 d) 11
- 26. The mass of 50% (mass/mass) solution of HCI required to react with 100g of CaCO₃ would be a) 73 g b) 100 g c) 146 g d) 200 g
- 27. Which of the following statements is not correct about the given reaction?

- a) Fe is oxidised from Fe²⁺ to Fe³⁺. b) Carbon is oxidised from C²⁺ to C⁴⁺. c) N is oxidised from N³⁻ to N⁵⁺.
- d) Carbon is not oxidised.
- 28. Oxidation number of carbon in CH₂Cl₂ is
 - a) 0 b) +1 c) +2 d) +4
- 29. Addition of iron or zinc to copper sulfate causes precipitation of copper owing to the ______ a) reduction of Cu²⁺ b) reduction of SO₄²⁻ c) reduction of Zn d) hydrolysis of CuSO₄

31. Which of the following is not a rule for calculating oxidation number?a) For ions, oxidation number is equal to the charge on the ion.b) The oxidation number of oxygen is -2 in all of its compounds.
c) The oxidation number of fluorine is -1 in all of its compounds. d)
Oxidation number of hydrogen is + 1 except in binary hydrides of alkali metals and alkaline earth metals where it is -1.
32. Arrange the following in increasing order of oxidation state of Ni. $ \begin{array}{lll} & K_2[Ni(CN)_4], \ K_2[NiF_6], Ni(CO)_4 \\ & a) \ Ni(CO)_4, \ K_2[Ni(CN)_4], \ K_2[NiF_6] \\ & b) \ K_2[Ni(CN)_4], \ Ni(CO)_4, \ K_2[NiF_6] \\ & c) \ Ni(CO)_4, \ K_2[NiF_6], K_2[Ni(CN)_4] \\ & d) \ K_2[NiF_6], K_2[Ni(CN)_4], \ Ni(CO)_4 \end{array} $
33. Which represents the disproportionation reaction? a) $2Cu^+ \rightarrow Cu^{2+} + Cu$ b) $3I_2 - 75I^- + I^{5+}$ c) $H_2O + CI_2 \rightarrow CI^- + CIO^- + 2H^+$ d) All of these
34. The oxidation number of Pt in $[Pt(C_2H_4)CI_3]^-$ is: a) +1 b) +2 c) +3 d) +4
35. Various oxidation states of few elements are mentioned. Which of the options is not correctly matched? a) Phosphorus: +3 to +5 b) Nitrogen: +1 to +5 c) Iodine: -1 to +7 d) Chromium: -3 to +6
36. The pair of compounds that can exist together is : a) FeCl ₃ , SnCl ₂ b) HgCl ₂ , SnCl ₂ c) FeCl ₂ , SnCl ₂ d) FeCl ₃ , KI
37. Which of the following can act as oxidising as well as reducing agent? a) H ₂ O ₂ b) SO ₃ c) H ₂ SO ₄ d) HNO ₃
38. What will be the order of decreasing reducing nature for the given metals? a) Zn > Na > Fe > Mg > Cu > Ag b) Cu > Fe > Mg > Zn > Na > Ag c) Ag> Cu > Fe> Zn > Mg > Na d) Na> Mg > Zn > Fe > Cu > Ag
39. Which species is acting as a reducing agent in the following reaction? $14H^+ + Cr_2O_7^{2-} + 3Ni \rightarrow 2Cr^{3+} + 7H_2O + 3Ni^{2+}$ a) $Cr_2O_7^{2-}$ b) Ni c) H^+ d) H_2O
 40. Mark the correct statement from the following: a) Copper metal can be oxidised by Zn²⁺ ions. b) Oxidation number of phosphorus in P₄ is 4. c) An element in the highest oxidation state acts only as a reducing agent. d) The element which shows highest oxidation number of +8 is Os in OsO₄.
41. Which of the following reactions does not involve the change in oxidation state of metal? a) $VO^{-2} o V_2O_3$ b) $K o K^+$ c) $Cu^{2+} o Cus$ d) $Cu^{2+} o Cu$
 42. In the reaction, I₂ + 2KCIO₃ → 2KIO₃ + CI₂ i) lodine is oxidised ii) Chlorine is reduced iii) lodine displaces chlorine iv) KCl0₃ is decomposed The correct combination is a) Only i & iv are correct b) Only iii & iv are correct c) i, ii, iii are correct d) All are correct
43. When KMnO ₄ is reduced with oxalic acid in acidic solution, the oxidation number of Mn changes from a) +2 to +7 b) +4 to +7 c) +7 to +2 d) +6 to +2
 44. Which of the following statements is not true? a) In a chemical reaction, oxidation is always accompanied by reduction. b) When a negative ion changes to neutral species, the process is oxidation. c) Oxidising agent has a tendency to lose electrons. d) Conversion of MnO₄²⁻ to MnO₄⁻ is oxidation.
45. Oxidation state of iron in Fe(CO) ₄ is
a) +1 b) -1 c) +2 d) 0 46. Using the standard electrode potential, find out the pair between which redox reaction is not feasible.
E 0 values : $Fe^{3+}/Fe^{2+}=+0.77; I_2/I^-=+0.54; Cu^{2+}/Cu=+0.34; Ag^+/Ag=+0.80V$

30. Thiosulphate reacts differently with iodine and bromine in the reactions given below $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^2 + 2I^-$; $S_2O_3^{2-} + 2Br_2 + 5H_2O \rightarrow 2SO_4^{2-} + 2Br^- + 10H^+$

Which of the following statement justifies the above dual behaviour of thiosulphate?

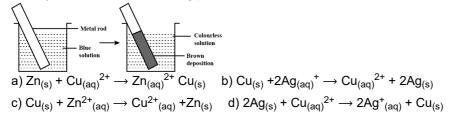
a) Bromine is a stronger oxidant than iodine b) Bromine is a weaker oxidant than iodine c) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions

d) Bromine undergoes oxidation and iodine undergoes reduction in these reactions

	a) ${\sf Fe}^{3+}$ and ${\sf I}^-$ b) ${\sf Ag}^+$ and ${\sf Cu}$ c) ${\sf Fe}^{3+}$ and ${\sf Cu}$ d) ${\sf Ag}$ and ${\sf Fe}^{3+}$
47.	Which of the following shows highest oxidation number in combined state?
48	a) Os b) Ru c) Both (1) and (2) d) Fe The oxidation states of metal in the compounds Fe _{0.94} O and [Cr(PPh ₃) ₃ (CO) ₃] respectively are
Ψ0.	a) $\frac{200}{94}$, 0 b) 0, $\frac{200}{94}$ c) 2,1 d) 1, $\frac{200}{94}$
49.	Loss of an electron is called: a) oxidation b) reduction c) combustion d) neutralisation
50.	Which of the following is not an example of disproportionation reaction?
	a) $4\text{CIO}^{\text{-}}_3 \rightarrow \text{CI}^{\text{-}} + 3\text{CIO}^{\text{-}}_4$ b) $2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2$ c) $2\text{NO}_2 + 2\text{OH}^{\text{-}} \rightarrow \text{NO}^{\text{-}}_2 + \text{NO}^{\text{-}}_3 + \text{H}_2\text{O}$ d) $1\text{CICI}_4 + 2\text{Mg} \rightarrow 1\text{Ti} + 2\text{MgCI}_2$
	The number of electrons involved in the conversion of MnO_4^- to MnO_2 is a) 3 b) 4 c) 1 d) 2
52.	Mn $^{3+}$ ions are unstable in solution and undergo disproportionation to give Mn $^{2+}$, MnO $_2$ and H $^+$ ions. What will be the balanced equation for the reaction? a) $3Mn^{3+}+4H_2O\to MnO_2+Mn^{2+}+8H^+$ b) $Mn^{3+}+4H_2O\to MnO_2+4H^+$ c) $Mn^{4+}+4H_2O\to MnO_2+4H^+$ d) $Mn^{4+}+2H_2O\to MnO_2+Mn^{4+}+4H^+$
53.	Identify the correct statement with respect to the following reaction,
	$2K_2MnO_4 + Cl_2 \rightarrow 2KCl + 2KMnO_4$ a) Oxidation of potassium manganate is taking place. b) Reduction of potassium manganate is taking place. c) Oxidation of Cl_2 is taking place. d) Cl_2 acts as reducing agent in the reaction.
54.	Correct order of tendency to loss of electrons a) Zn > Cu > Ag b) Zn < Cu < Ag c) Zn > Cu < Ag d) Cu> Zn > Ag
55.	Which of the following halides is most easily oxidised? a) F ⁻ b) Br ⁻ c) I ⁻ d) Cl ⁻
56.	Oxidation number of Fe in Fe ₃ O ₄ are:
	a) +2 and +3 b) +1 and +2 c) +1 and +3 d) None
57.	Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:
	$BrO_4^-1.82 VBrO_3^-1.5 VHBrO1.595 VBr_21.0652 VBr^-$ Then the species undergoing
	disproportionation is: a) BrO ₃ ⁻ b) BrO ₄ ⁻ c) Br ₂ d) HBrO
58.	Which of the following are the common oxidising agents used in redox titrations?
	a) K ₂ Cr ₂ O ₇ , KMnO ₄ , Iodine b) FeSO ₄ , KMnO ₄ , Sodium thiosulphate c) Oxalic acid, KMnO ₄ , CuSO ₄ d) Mohr's salt, KI, Sodium sulphate
59.	Why is HCl not used to make the medium acidic in oxidation reactions of KMnO ₄ in an acidic medium? a) Both HCl and KMnO ₄ act as oxidising agents b) KMnO ₄ oxidises HCl into Cl ₂ which is alsoan oxidising agent c) KMnO ₄ is a weaker oxidising agent than HCl d) KMnO ₄ acts as a reducing agent in the presence of HCl
60.	The oxidation number of sulphur in S_8 , S_2F_2 and H_2S are a) 0, +1 and -2 b) +2, +1 and-2 c) 0, +1 and +2 d) -2, +1 and -2
61.	What is the change in oxidation number of carbon in the following reaction? $ {\rm CH_4}(g) + 4{\rm Cl_2}(g) \to {\rm CCl_4}(1) + 4{\rm HCl}(g) $ a) 0 to -4 b) +4 to +4 c) 0 to +4 d) -4 to +4
62.	Which of the following is not decomposition reactions? a) 2HgO \rightarrow 2Hg + O ₂ b) 2H ₂ O \rightarrow 2H ₂ + O ₂ c) 2KClO ₃ \rightarrow 2KCl + 3O ₂ d) CH _{4(g)} + 2O _{2(g)} \rightarrow CO _{2(g)} + 2H ₂ O ₍₁₎
63.	
	A)+3 Oxidation state 1) Nitrogen B) + 1 Oxidation state2) Nitrous oxide
	C) 0 Oxidation state 3) Nitrate ion
	D) + 5 Oxidation state4) Hydroxylamine
	5) Nitrite ion

The correct match is

	a) ABCD 1432		c) ABCD 4531	d) ABCD 5213
64.				e change $N_2 o NH_3$ is
	•		c) 28/2	
65.	HCHO + Which of a) HCHO b) HCHO c) [Ag(NI	2[Ag(NH)] the follow is oxidis is reduction $H_3)_2]^+$ is re-	wing state ed to HC0 ed to HC0 ed to HC0	tion: $I^{-} \rightarrow 2Ag + HCOO^{-} + 4NH_{3} + 2H_{2}O$ ments regarding oxidation and reduction is correct? $DO^{-} \text{ and } [Ag(NH_{3})_{2}]^{+} \text{ is reduced to } Ag$ $DO^{-} \text{ and } [Ag(NH_{3})_{2}]^{+} \text{ is oxidised to } Ag.$ $DAG \text{ while } OH^{-} \text{ is oxidised to } HCOO^{-}.$ $DAG \text{ NH3} \text{ while } HCHO \text{ is reduced to } H_{2}O.$
66.			ole of oxal c) 1/5 d	ate ions oxidiscd by one mole of MnO ₄ ⁻ is) 5
67.	a) Evapo	ration of	H ₂ O b)	dox reaction? Both oxidation and reduction c) $\rm H_2SO_4$ and NaOH $\rm O_2$ by lighting
68.			nber of 'M +5 d) +	n' in potassium permanganate is +8
69.	a) An inc b) A deci c) A reag	crease in o rease in o gent which	oxidation oxidation roll lowers the	ments is correct regarding redox reactions? number of an element is called reduction. number of an element is called oxidation. ne oxidation number of an element in a given substance is reductant. es the oxidation number of an element in a given substance is reductant.
70.			ion numb c) +2	er of carbon in C_3O_2 (carbon suboxide)? d) +2/3
71.	a) it is m		onegative	gent because b) it has highest reduction potential. c) it has highest oxidation potential.
72.	Pb_3O_4 -		ightarrow 3PbC	$l_2 + C l_2 + 4 H_2 O$ ns get oxidised to Pb $^{4+}$ state
	state c)		Ū	educed to Pb ²⁺ and two numbers of Pb ²⁺ ions remain unchanged in their oxidation oxidised to Pb ⁴⁺ and two numbers of Pb ⁴⁺ ions remain unchanged in their oxidation
	states d) three	numbers	of Pb ⁴⁺ io	ns get reduced to Pb ²⁺ state.
73.	$As_2S_3 +$	-	H_3ASO_4	insferred from reductant to oxidant in the following redox process? + $\rm H_2SO_4$ + $\rm NO$
74.				required to oxidize one mole of ferrous oxalate completely in acidic medium will be: c) 0.6 moles d) 0.4 moles
75.			_	BrO_3^- , the oxidation state of bromine changes from c) 0 to - 3 d) + 2 to + 5
76.	NH ₂ OH - Which st a) n-factor	+ Fe ₂ (SC atement i or for Hyd	$(0_4)_3 ightarrow N_2$ s correct Iroxyl ami	n (III) according to following equation $_{2}(g) + H_{2}O + FeSO_{4} + H_{2}SO_{4}$ ne is 2 b) equivalent weight of $Fe_{2}(SO_{4})_{3}$ is M/2 ntained in 3 millimoles of ferric sulphate d) all of these
77.	In which	of the foll	owing cor	mpounds oxidation state of chlorine has two different values? OCl ₂ d) CCl ₄
78.	-	•	•	D o NaOH + H2


- a) H- is oxidised b) Na⁺ is reduced c) both NaH and H₂O are reduced d) None of the above
- 79. The most common oxidation state of an element is -2. The number of electrons present in its outermost 21 shell is
 - a) 2 b) 4 c) 6 d) 8
- 80. Given $E^0_{Ag^+/Ag} = +0.80V; \; E^0_{Cu^{2+}/Cu} = +0.34V; \; E^0_{Fe^{3+}/Fe^{2+}} = +0.76V; \; E^0_{Ce^{4+}/Ce^{3+}} = +1.60V$ Which of the following statements is not correct?
 - a) Fe³⁺ does not oxidise Ce³⁺. b) Cu reduces Ag⁺ to Ag. c) Ag will reduce Cu²⁺ to Cu.
 - d) Fe³⁺ reduces Cu²⁺ to Cu.
- 81. A compound contains atoms X, Y and Z. The oxidation number of X is +2, Y is +5 and Z is -2.

The possible formula of the compound is

- a) XYZ_2 b) $Y_2(XZ_3)_2$ c) $X_3(YZ_4)_2$ d) $X_3(Y_4Z)_2$
- 82. In a conjugate pair of reductant and oxidant, the reductant has:
 - a) higher ox. no. b) lower ox.no. c) same ox. no. d) either of these
- 83. It is found that V forms a double salt, isomorphous with Mohr's salt. The oxidation number of V in this compound is
 - a) +3 b) +2 c) +4 d) -4
- 84. What is the equivalent mass of KIO₃ in the given reaction?

$$KIO_3$$
 + 2KI + 6HCI \rightarrow 31CI + 3KCI + 3H₂O

- a) 214 b) 428 c) 107 d) 53.5
- 85. In which of the following compounds, an element exhibits two different oxidation states?
 - a) NH_2OH b) NH_4NO_3 c) N_2H_4 d) N_3H
- 86. $2CuI \rightarrow Cu + CuI_2$, the reaction is
 - a) disproportionation b) Neutralisation c) Oxidation d) Reduction
- 87. When SO₁ is Passed in a solution of potassium iodate, the oxidation state of iodine changes from
 - a) + 5 to 0 b) + 5 to -1 c) -5 to 0 d) -7. to -1
- 88. Which is not true about the oxidation state of the following elements?
 - a) Sulphur +6 to -2 b) Carbon +4 to-4 c) Chlorine +7 to -1 d) Nitrogen +3 to-1
- 89. Identify the redox reaction taking place in a beaker.

90. Consider the following reaction,

Select the incorrect statement.

- a) It is not a disproportionation reaction. b) It is intramolecular redox reaction.
- c) OH^- is a reducing as well as oxidising agent d) H^- is a reducing as well as oxidising agent.
- 91. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as:

Assertion: Inert electrolytes like KCl, KNO₃ are used in salt bridge.

Reason: Salt bridge provides an electric contact between the two solutions without allowing them to mix with each other.

- a) If both assertion and reason are true and reason is the correct explanation of assertion.
- b) If both assertion and reason are true but reason is not the correct explanation of assertion.
- c) If assertion is true but reason is false. d) If both assertion and reason are false
- 92. Which substance is serving as a reducing agent in the following reaction?

$$14H^{+} + Cr_{2}O_{7}^{2} + 3Ni \rightarrow 2Cr^{3+} + 7H_{2}O + 3Ni^{2+}$$
?

- a) H^+ b) $Cr_2O_7^{2-}$ c) H_2O d) Ni
- 93. In which of the following reactions, the underlined substance has been reduced?

- 96. KMnO₄ acts as an oxidising agent in alkaline medium, when alkaline KMnO₄ is treated with KI, iodine ion is oxidised to
 - a) I_2 b) IO^- c) IO_3^- d) IO_4^-
- 97. Experimentally it was found that a metal oxide has formula $M_{0.98}O$. Metal M, is present as M^{2+} and M^{3+} in its oxide. Fraction of the metal which exits as M^{3+} would be
 - a) 6.05% b) 5.08% c) 7.01% d) 4.08%
- 98. Identify disproportionation reaction.
 - a) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ b) $CH_4 + 4CI_2 \rightarrow CCI_4 + 4HCI$ c) $2F_2 + 2OH^- \rightarrow 2F^- + OF_2 + H_2O$ d) $2NO_2 + 2OH^- \rightarrow NO_2^- + NO_3^- + H_2O$
- 99. The oxidation number of phosphorus in Ba(H₂PO₂)₂ is:
 - a) +3 b) +2 c) +1 d) -1
- 100. Arrange the following metals in which they displace each other from the solutions of their salts in decreasing order. Al, Cu, Fe, Mg and Zn.

 $[E^0_{AI^{3+}/AI}=-1.66V,\ E^0_{Cu^{2+}/Cu}=+0.34V,\ E^0_{Fe^{2+}/Fe}=-0.44V,\ E^0_{Mg^{2+}/Mg}=-2.36V,\ and\ E^0_{Zn^{2+}/Zn}=-0.76V]$

- a) Cu, Fe, Zn, Al, Mg $\,$ b) Fe, Zn, Cu, Al, Mg $\,$ c) Mg, Cu, Fe, Zn, Al $\,$ d) Mg, Al, Zn, Fe, Cu
- 101. Which of the following is the strongest oxidizing agent?
 - a) F_2 b) Cl_2 c) Br_2 d) l_2
- 102. In which of the following compounds carbon is in highest oxidation state?
 - a) CH₃Cl b) CCl₄ c) CHCl₃ d) CH₂Cl₂
- 103. Which of the following acts as a self-indicator?
 - a) K₂Cr₂O₇ b) KMnO₄ c) Oxalic acid d) lodine
- 104. A solution contains mixture of H_2SO_4 , $H_2C_2O_4$. 20 ml of this solution requires 40 ml of M/10 NaOH for neutralization and 20 ml of N/10 KMnO₄ for oxidation. The molarity of $H_2C_2O_4$, H_2SO_4 are:
 - a) 0.1, 0.1 b) 0.1, 0.05 c) 0.05, 0.01 d) 0.05, 0.05
- 105. A compound contains atoms of three-element A, B and C . If the oxidation number of A is +2. B is +5. and that of C is -2 the possible formula of the compound is
 - a) $\mathrm{A(BC_3)_2}$ b) $\mathrm{A_3(BC_4)_2}$ c) $\mathrm{A_3(~B_4C)_2}$ d) $\mathrm{ABC_2}$
- 106. How many moles of KMnO₄ are needed to oxidised a mixture of 1 mole of each FeSO₄ & FeC₂O₄ in acidic medium
 - a) 4/5 b) 5/4 c) 3/4 d) 5/3
- 107. Identify the compounds which are reduced and oxidised in the following reaction:
 - $3N_2H_4 + 2BrO_3^- \rightarrow 3N_2 + 2Br + 6H_2O$
 - a) N₂H₄ is oxidised and BrO⁻₃ is reduced. b) BrO⁻₃ is oxidised and N2H4is reduced.
 - c) BrO₃ is both reduced and oxidised. d) This is not a redox reaction.
- 108. In the reaction, $CH_3OH \rightarrow HCOOH$, the number of electrons that must be added to the right is:
 - a) 4 b) 3 c) 2 d) 1
- 109. In balancing the half-reaction, $S_2O_3^{\ 2^-} \to S(s)$, the number of electrons that must be added is:
 - a) 2 on the right b) 2 on the left c) 3 on the right d) 4 on the left

110. Among the properties (i) reducing (ii) oxidising (iii) complexing the set of properties shown by CN ion towards	
metal species is : a) i,ii,iii b) ii,iii c) iii,i d) i,ii	
111. For the reaction: $l^- + ClO_3^- + H_2SO_4 \rightarrow Cl + HSO_4^- + I_2$	
The incorrect statement in the balanced equation is	
a) stoichiometric coefficient of HSO-4 is 6 b) iodide is oxidized c) sulphur is reduced	
d) H ₂ O is one of the products.	
112. Which type of redox reaction is shown by the following reaction?	
$0 +1-1 +1-1 0$ $Cl + 2KR_{m-1} + 2KCl + R_{m-1}$	
$Cl_{2(g)}+2KBr_{(aq)} ightarrow 2KCl_{(aq)}+Br_{2(l)}$ a) Non-metal displacement reaction $$	
c) sodium loses electrons and is oxidised while water is reduced	
d) water loses electrons and is oxidised to hydrogen.	
113. For decolourisation of 1 mole of acidified KMnO $_4$ the moles of H $_2$ O $_2$ required are a) 1/2 b) 3/2 c) 5/2 d) 7/2	
114. The charge on cobalt in [Co(CN) ₆] ³⁻ is	
a) +3 b) -3 c) +6 d) -6	
115. Oxidation numbers of P in PO_4^{3-} , of S in SO_4^{2-} and that of $= Cr$ in $Cr_2O_7^{2-}$ are respectively : a) +3,+6 and +5 b) +5, +3 and +6 c) -3,+6 and +6 d) +5, +6 and +6	
116. Phosphorus on reaction with NaOH produces PH ₃ and NaH ₂ PO ₂ . This reaction is an example of a) oxidation b) reduction c) disproportionation d) displacement.	
117. Which of the following is true about the given redox reaction? $SnCl_2 + 2FeCl_3 ightarrow SnCl_4 + 2FeCl_2$	
 a) SnCl₂ is oxidised and FeCl₃ acts as oxidising agent. b) FeCl₃ is oxidised and acts as oxidising agent. c) SnCl₂ is reduced and acts as oxidising agent. d) FeCl₃ is oxidised and SnCl₂ acts as a oxidising agent. 	
118. Which of the following arrangements represent increasing oxidation number of the central atom? a) $CrO_{\overline{2}}$, $CIO_{\overline{3}}$, $CrO_{\overline{4}}^{2-}$, $MnO_{\overline{4}}$ b) $CIO_{\overline{3}}$, $CrO_{\overline{4}}^{2-}$, $MnO_{\overline{4}}$, $CrO_{\overline{2}}$	
c) $CrO_{\overline{2}}^{2},CIO_{\overline{3}}^{3},MnO_{\overline{4}}^{2},CrO_{4}^{2-}$ d) $CrO_{4}^{2-},MnO_{\overline{4}}^{2},CrO_{\overline{2}}^{2},CIO_{\overline{3}}^{2},$	
119. The equivalent weight of Na $_2$ S $_2$ O $_3$ as reductant in the reaction, Na $_2$ S $_2$ O $_3$ + H $_2$ O + CI $_2$ \rightarrow Na $_2$ SO $_4$ + 2HCI + S is:	
[Given: Molecular weight of Na ₂ S ₂ O ₃ = M] a) $\frac{M}{1}$ b) $\frac{M}{2}$ c) $\frac{M}{6}$ d) $\frac{M}{8}$	
120. Equivalent weight of Ba(MnO ₄) ₂ in acidic medium (M = molar mass)	
a) M b) M/3 c) M/5 d) M/10	
121. The oxidation state of molybdenum in its oxo complex species $[Mo_2O_4(C_2H_4)_2(H_2O_2)]^{2-}$ is	
a) +2 b) +3 c) +4 d) +5	
122. Oxidation number of Cr in CrO ₅ is:	
a) +5 b) -3 c) +6 d) +7	
123. Equivalent weight of As_2O_3 in the following equation $As_2O_3 + 2I_2 + 2H_2O \rightarrow As_2O_5 + 4HI$ [arsenic at. wt =75] a) 49.5 b) 156.6 c) 94 d) 75	
124. In acidic medium, H_2O_2 changes $Cr_2O_7^{2-}$ to CrO_5 , which has two (O_O_) bonds. The oxidation state of Cr in	l
CrO ₅ is: a) +5 b) +3 c) +6 d) -10	
125. Oxidation number of P in PO ₄ ³⁻ , of 5 in SO ₄ ²⁻ and that of Cr in Cr ₂ O ₇ ²⁻ are respectively:	
a) +3, +6 and +5 b) +5, +3 and +6 c) -3, +6 and +6 d) +5, +6 and +6	