

RAVI MATHS TUITION CENTRE, WHATSAPP-8056206308

Time: 1 Mins GENERAL PRINCIPLES AND PROCESS Marks: 668

OF ISOLATION OF ELEMENTS 1

- 1. The significance of leaching in the extraction of aluminium is:
 - a) it helps removing the impurities like SiO₂, Fe₂O₃, etc from the bauxite ore
 - b) it converts the ore into oxide c) it reduces melting point of the ore
 - d) it eliminates water from bauxite.
- 2. Heating pyrites to remove sulphur is called
 - a) smelting b) calcination c) liquation d) roasting.
- 3. Sulphide ores of metals are usually concentrated by froth floatation process. Which one of the following sulphide ores offers an exception and is concentration by chemical leaching?
 - a) Argentite b) Galena c) Copper pyrite d) Sphalerite
- 4. Column chromatography involves separation of a mixture over a column of adsorbent (stationary phase) packed in a glass tube. Depending upon the degree of adsorption complete separation takes place. In the given column, three coloured bands x, y, z are formed. Identify the correct statement.

- a) x, y and z are adsorbed to the same extent.
- b) The most readily adsorbed component is retained near the top (x).
- c) The most readily adsorbed component comes down (z).

d)

- x, y, z layers are formed according to the wavelengths of the colours not on the basis of adsorption.
- 5. Which of the following are main requirements for vapour phase refining?
 - (i) Metal should form a volatile compound with the reagent.
 - (ii) The volatile compound should be easily decomposable to give back pure metal.

	(iii) Metal should be very reactive and form a stable compound with the reagent a) (i), (ii) and (iii) b) (i) and (ii) c) (ii) and (iii) d) (i) and (iii)
6.	Which of the following ores is concentrated by chemical leaching method? a) Cinnabar b) Argentite c) Copper pyrites d) Galena
7.	One mole of acidified $K_2Cr_2O_7$ on reaction with excess KI will liberate mole(s) of L; a) 3 b) 1 c) 7 d) 2
8.	How do we separate two sulphide ores by froth floatation method? a) By using excess of pine oil b) By adjusting proportion of oil to water or using depressant
	c) By using collectors and froth stabilisers like xanthates. d) By using some solvent in which one of the sulphides is soluble.
9.	In electrometallurgy of aluminium, what will happen if graphite rods are not used as anode and are replaced by some other metal
	a) Ozliberated at anode will react with aluminium to give back Al_2O_3 b) F_2 will be liberated at anode instead of O_2
	c) The process of electrometallurgy will become non -spontaneous d) Aluminium oxide splits into Al ³⁺ and O ²⁻ ions only in presence of graphite.
10.	At 1000°C, $Zn_{(s)}+rac{1}{2}O_{2(g)} o ZnO_{(s)}; riangle GO^o-360KJmol^{-1} \ C_{(s)}+rac{1}{2}O_{2(g)} o CO_{(g)}; riangle GO^o-460KJmol^{-1}$
	The correct statement is a) zinc can be oxidised by carbon monoxide. b) zinc blend is produced during the reaction. c) zinc oxide can be reduced by graphite d) zinc can be oxidised by graphite
11.	In blast furnace iron oxide is reduced by a) silica b) carbon monoxide c) carbon d) lime stone
12.	Sulphide ores of metals are usually concentrated by froth flotation process. Which one of the following sulphide ores offer an exception and concentrated by chemical leaching a) Galena b) Copper pyrite c) Sphalerite d) Argentite
13.	Magnesium oxide is used for the lining in steel making furnace because a) MgO acts as an acidic flux to remove impurities of Si, P and S b) MgO acts as a basic flux to remove impurities of Si, P and S c) MgO acts as an oxidising agent to remove impurities of oxides d) MgO does not react with any type of impurities.
	Brine is electrolysed by using inert electrodes. The reaction at anode is a) $Cl_{(aq)}^- o frac{1}{2}Cl_{2(g)} + e^-; E_{cell}^o = 1.36V \text{b) } 2H_2O_{(l)} o O_{2(g)} + 4H^+ + 4e^-; E_{cell}^o = 1.23V$ c) $Na_{(aq)}^+ + e^- o Na_{(s)}; E_{cell}^o = 2.71V \text{d) } H_{(aq)}^+ + e^- o frac{1}{2}H_{2(g)}; E_{cell}^o = 0.00V$
15.	Assertion: Gold and silver are extracted from their native ores by leaching. Reason: Both silver and gold particles dissolve in dilute solution of sodium cyanide in

presence of oxygen.

a)

If both assertion and reason are true and reason is the correct explanation of assertion.

b)

If both assertion and reason are true but reason is not the correct explanation of assertion

- c) If assertion is true but reason is false. d) If both assertion and reason are false
- 16. Electrolytic refining is used to purify which of the; following metals?

- a) Cu and Zn b) Ge and Si c) Zr and Ti d) Zn and Hg
- 17. Match the column I with column II and mark the appropriate choice.

Col	lumn-l	Column-II	
A)	Electrical industry	(i)	Zinc
B)	Batteries	(ii)	Steel
C)	Gutter pipes	(iii)	Copper
D)	Gas stoves	(iv)	Cast iron

a) (A)
$$\rightarrow$$
 (i), (B) \rightarrow (ii), (C) \rightarrow (iii), (D) \rightarrow (iv) b) (A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (iv), (D) \rightarrow (i)

c) (A)
$$\rightarrow$$
 (iv), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (i) d) (A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (iv),(D) \rightarrow (ii)

18. Roasting of copper pyrite ores is for the following purpose

a)

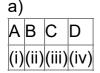
to burn off sulphur, arsenic, antimony etc. as oxides and convert all the iron and copper to their oxides

b)

to burn off arsenic, antimony etc. as oxides and burn off sulphur so that enough of it remains to combine with all the copper

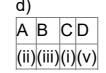
c)

to burn off sulphur partially, in order to leave enough of sulphur to combine with arsenic, antimony etc. and to convert all the iron and copper to oxides


d)

to melt arsenic and antimony sulphides etc. and remove them by liquation and to burn off sulphur partially to leave enough to combine with copper and iron.

- 19. Which of the following is used as a method of purification for silicon?
 - a) Electrolytic refining b) Liquation c) Zone refining d) Distillation


- 20. Match items of Column I with the items of Column II and assign the correct code:

Column I	Column II
(A) Cyanide process	(i) Ultrapure Ge
(B) Froth floatation process	(ii) Dressing of ZnS
(C) Electrolytic reduction	(iii) Extraction of Al
(D) Zone refining	(iv) Extraction of Au
	(v) Purification of Ni

21. Match the column I with column II and mark the appropriate choice

Column-I		Column-II		
Α	Calcination	(i)	$Cr2O_3 + 2AI \rightarrow 2Cr + Al2O_3$	
В	Roasting	(ii)	$FeCO_3 \rightarrow FeO + CO_2$	
С	Smelting	(iii)	$2ZnS + 3O_2 \rightarrow ZnO + 2SO_2$	
D	Aluminothermy	(iv)	PbO +C→Pb + CO	

- a) (A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iii), (D) \rightarrow (iv)
- b) (A) \rightarrow (iv), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (i)
- c) (A) \rightarrow (iii), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iv) d) (A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (iv), CD) \rightarrow (i)
- 22. Which of the following metals is not extracted by leaching?
 - a) Aluminium b) Mercury c) Silver d) Gold
- 23. _____being highly reactive is used in the extraction of chromium and manganese.
 - a) Al b) Zn c) Cu d) Mg
- 24. Which of the following ores cannot be concentrated by magnetic separation?
 - a) Haematite b) Malachite c) Magnetite d) Siderite
- 25. Which of the following statements, about the advantage of roasting of sulphide ore before reduction is not true?
 - a) The ΔG_f^0 of the sulphide is greater than those for CS₂ and H₂S.
 - b) The ΔG_f^0 is negative for roasting of sulphide ore to oxide.
 - c) Roasting of the sulphide to the oxide is thermodynamically feasible
 - d) Carbon and hydrogen are suitable reducing agents for metal sulphides
- 26. During a column chromatography through Al₂O₃ column, a mixture of components A, B and C is passed through the column. On adding eluant, compound 'A' is eluted first then 'B' and in the end 'CO Which of the following statements regarding the components is correct.
 - a) The order of adsorption of A, B and C is C>B>A.
 - b) The order of adsorption of A, B and C is A>B>C.
 - c) The order of adsorption of A, B and C is B>A>C.
 - d) The order of adsorption of A, B and C is B>C>A.
- 27. Which of the following sulphides when heated strongly in air gives the corresponding metal without undergoing separate reduction of oxide?
 - a) Cu₂S b) FeS c) HgS d) ZnS
- 28. Assertion: Reduction of a metal oxide is easier if the metal formed is in liquid state at the temperature of reduction.

Reason: The entropy is higher if the metal is in liquid state.

a)

If both assertion and reason are true and reason is the correct explanation of assertion.

b)

If both assertion and reason are true but reason is not the correct explanation of assertion

c) If assertion is true but reason is false.d) If both assertion and reason are false29. Which of the following is not an oxide ore?a) Corundumb) Zincitec) Calamined) Chromite

30. Match the column I with column II and mark the appropriate choice

Cc	lumn-l	Column-II	
Α	Calamine	(i)	Calcium
В	Barytes	(ii)	Barium
С	Cinnabar	(iii)	Zinc
D	Limestone	(iv)	Mercury

- $a) \ (A) \rightarrow \ (iv), \ (B) \rightarrow \ (iii), \ (C) \rightarrow \ (i), \ (D) \rightarrow \ (ii) \\ b) \ (A) \rightarrow \ (iii), \ (B) \rightarrow \ (ii), \ (C) \rightarrow \ (iv), \ (D) \rightarrow \ (ii)$
- c) (A) \rightarrow (i), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (iii) d) (A) \rightarrow (ii), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (iv)
- 31. Which of the following compounds is used as the starting material for the preparation of potassium dichromate?
 - a) K₂SO₄.Cr₂(SO₄)₃.24H₂O (Chrome alum) b) PbCrO₄ (Chromite yellow)
 - c) FeCr₂O₄ (Chromite) d) PbCrO₄.PbO (Chrome red)
- 32. Which of the following is not a carbonate ore?
 - a) Dolomite b) Calamine c) Siderite d) Zincite
- 33. "Metals are usually not found as nitrates in their ores." Out of the following two (I and II) reasons which is/are true for the above observation?
 - I. Metal nitrates are highly unstable
 - II. Metal nitrates are highly soluble in water.
 - a) I and II are true b) I and II are false c) I is false but II is true
 - d) I is true but II is false
- 34. Identify the correct statement from following
 - a) Pig iron can be moulded into variety of shapes
 - b) Wrought iron is impure iron with 4% carbon
 - c) Blister copper has blistered appearance due to evolution of CO₂.
 - d) Vapour phase refining is carried out for Nickel by VanArkel method.
- 35. Why is partial roasting of sulphide ore done in metallurgy of copper?
 - a) Auto-reduction of Cu-O formed is carried out by remaining CU₂S in the reaction.
 - b) Cu is separated out by partial reduction due to sedimentation.
 - c) Due to difference in gravity Cu₂O and CU₂S are separated.
 - d) Complete roasting cannot be done in one step hence partial roasting is done
- 36. For which of the following ores froth floatation method is used for concentration?
 - a) Haematite b) Zinc blende c) Magnetite d) Carnallite
- 37. Which one of the following is not a sulphide ore?
 - a) Galena b) Iron pyrites c) Magnetite d) Copper glance
- 38. Which of the following reactions is an example of autoreduction?
 - a) $Fe_3O_4 + 4CO \rightarrow 3Fe + 4CO_2$ b) $Cu_2O+C \rightarrow 2Cu+CO$
 - c) $Cu^{2+}_{(aq)}$ + $Fe_{(s)}$ $\rightarrow Cu_{(s)}$ + $Fe^{2+}_{(aq)}$ d) $Cu_2O + \frac{1}{2}Cu_2S \rightarrow 3Cu + \frac{1}{2}SO_2$

39. Match the column I with column II and mark the appropriate choice

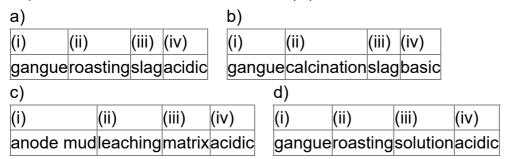
Column-l			Column-II		
A)	Impure metal to volatile complex	(i)	Blistered copper		
B)	2CU ₂ O + CU ₂ S→6Cu+ SO ₂	(ii)	Mond process		
C)	Purification of mercury	(iii)	van Arkel process		
D)	Purification of zirconium	(iv)	Liquation		

a) (A)
$$\rightarrow$$
 (iv), (B) \rightarrow (iii), (C) \rightarrow (i), (D) \rightarrow (ii)

b) (A)
$$\rightarrow$$
 (ii), (B) \rightarrow (i), (C) \rightarrow (iv), (D) \rightarrow (iii)

c) (A)
$$\rightarrow$$
 (i), (B) \rightarrow (ii), (C) \rightarrow (iv), (D) \rightarrow (iii)

d) (A)
$$\rightarrow$$
 (iii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (ii)


40. Which of the following reactions is not taking place in Blast furnace during metallurgy of iron between the temperature range of 500-800 K?

a) FeO + CO
$$\rightarrow$$
 Fe + CO₂ b) $3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + 4CO_2$

c)
$$Fe_3O_4 + 4CO \rightarrow 3Fe + 4CO_2$$
 d) $Fe_2O_3 + CO \rightarrow 2FeO + CO_2$

41. Fill in the blanks with the correct choice.

The undesired impurities present in the ores are called <u>(i)</u>. To remove the volatile impurities from the ore, the <u>(ii)</u> process is carried out. Flux combines with non-fusible impurities to form <u>iii</u> CaO acts as a <u>(iv)</u> flux.

42. Removal of the unwanted materials like sand, clays etc. from the ore is known as , , , or .

- a) concentration, dressing, benefaction b) separation, refining, gangue
- c) magnetic separation, purification, gangue d) washing, refining, amalgamation
- 43. The method of zone refining of metals is based on the principle of:
 - a) greater noble character of the solid metal than that of the impurity
 - b) greater solubility of the impurity in the molten state than in the solid
 - c) greater mobility of the pure metal than that of impurity
 - d) higher melting point of the impurity than that of the pure metal
- 44. Assertion: Zone refining method is used to prodlice pure metals which are used as semiconductors.

Reason: Semiconductors are used in highly Pure form

a)

If both assertion and reason are true and reason is the correct explanation of assertion.

b)

If both assertion and reason are true but reason is not the correct explanation of assertion

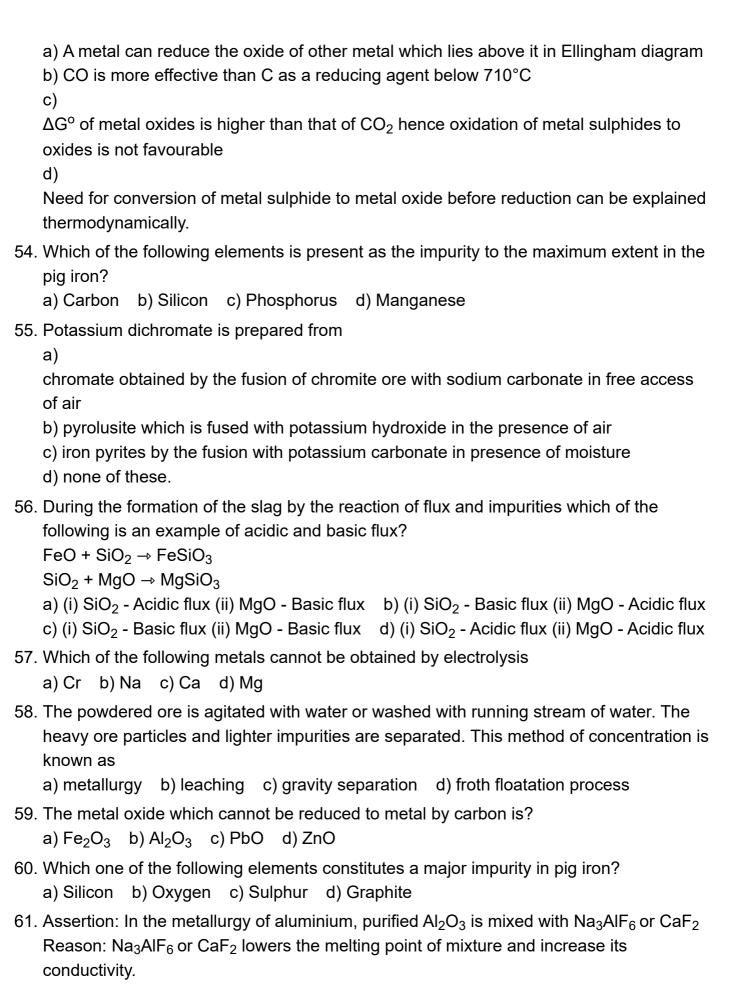
- c) If assertion is true but reason is false. d) If both assertion and reason are false
- 45. Elemental silicon to be used as a semiconductor is purified by
 - a) heating under vacuum b) floatation c) zone refining d) electrolysis
- 46. Match the column I with column II and mark the appropriate choice.

Co	olumn-l	Column-II		
Α	Highly electropositive metals	(i)	Carbon reduction	
В	Copper	(ii)	CO reduction	
С	Iron	(iii)	Self reduction	
D	Zinc	(iv)	Electrolysis	

a) (A)
$$\rightarrow$$
 (iv), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (i) b) (A) \rightarrow (iii), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iv)

c) (A)
$$\rightarrow$$
 (ii), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (iv) d) (A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iii), (D) \rightarrow (iv)

47. Given below are the different temperature reactions and products during extraction of iron in blast furnace.


Р	900K	1.	Fe ₂ O ₃ +3C→2Fe+3CO
Q	1200K	2.	CaCO ₃ →CaO+CO ₂
R	1500K	3.	2C+O ₂ →2CO
S	2000K	4.	Fe ₂ O ₃ +3CO→2Fe+3CO ₂

Find the correct match

- a) P-4, Q-2, R-3, S-1 b) P-4, Q-3, R-2, S-1 c) P-3, Q-4, R-1, S-2
- d) P-4, Q-2, R-1, S-3
- 48. Which of the following statements is correct about the role of collectors added during froth floatation process?
 - a) Collectors enhance the non-wettability of ore particles.
 - b) Collectors enhance the wettability of gangue particles.
 - c) Collectors help in separating two sulphide ores present in the mixture
 - d) Collectors help ore particles to settle down below the froth
- 49. Which of the following slags is produced during extraction of iron?
 - a) $CaSiO_3$ b) $FeSiO_3$ c) $MgSiO_3$ d) $ZnSiO_3$
- 50. Wrought iron is manufactured from cast iron by heating it with:
 - a) C b) $CaCO_3$ c) Fe_2O_3 d) SiO_2
- 51. Sulphide ore of zinc/copper is concentrated by
 - a) floatation process b) electromagnetic process c) gravity separation
 - d) distillation.
- 52. Which of the following reactions takes place at higher temperature range (900 K-IS00 K) in blast furnace?

a)
$$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$$
 b) $FeO + CO \rightarrow Fe + CO_2$

- c) $Fe_3O_4 + 4CO \rightarrow 3Fe + 4CO_2$ d) $Fe_2O_3 + CO \rightarrow 2FeO + CO_2$
- 53. Which of the following is not correct observation based on Ellingham diagram?

	a) If both assertion and reason are true and reason is the correct explanation of assertion.
	b)
	If both assertion and reason are true but reason is not the correct explanation of assertion
	c) If assertion is true but reason is false. d) If both assertion and reason are false
62.	Which of the following statements are incorrect?
	I. Zinc can be extracted by self-reduction.
	II. A depressant prevents certain type of particles to come to the froth.
	III. Copper matte contains ZnS and Cu ₂ S,
	IV. The solidified copper obtained from reverberatory furnace has blistered appearance due to evolution of SO ₂ during the extraction
	a) I and II b) II and III c) I and III d) II and IV
63	Below point 'A' FeO can
00.	a) be reduced by carbon monoxide only
	b) be reduced by both carbon monoxide and carbon c) be reduced by carbon only
	d) not be reduced by both carbon and carbon monoxide
64.	Assertion: van Arkel method is used for refining of zinc.
	Reason: In this method impure metal is evaporated to obtain the pure metal as distillate.
	a)
	If both assertion and reason are true and reason is the correct explanation of assertion.
	b) If both assertion and reason are true but reason is not the correct explanation of
	assertion
	c) If assertion is true but reason is false. d) If both assertion and reason are false
65.	Which of the following metals is extracted using a silica lined convertor?
	a) Mg b) Al c) Cu d) Zn
66.	Which of the following examples is not correctly matched?
	a) Two most abundant elements - Fe, AI.
	b) Two metals which occur in native state - Au, Pt
	c) Two metals which can occur in combined and native state both - Zn, Fe.
67	d) None of these
01.	Yellow coloured aqueous solution of sodium chromate changes to orange when acidified with sulphuric acid because
	a) H ⁺ ions convert chromate ions to dichromate ions
	b) H ⁺ ions react with sodium chromate to give sodium ions which turn solution orange
	c) Cr ³⁺ ions are liberated in the solution which turn the solution orange
	d)
	sodium hydroxide is formed during the reaction which imparts orange colour to the
	solution

68. Which process of purification is represented by the following reaction?

$$Ti \atop Impure + 2I_2 \xrightarrow{250^{o}C} TiI_4 \xrightarrow{1400^{o}C} Ti + 2I_2$$

- a) Zone refining b) Monds process c) Cupellation d) van Arkel process
- 69. Which of the following is not a method of refining of metals?
 - a) Electrolysis b) Smelting c) Poling d) Liquation
- 70. In the extraction of chlorine by electrolysis of brine _____
 - a) oxidation of Cl⁻ ion to chlorine gas occurs
 - b) reduction of CI ion to chlorine gas occurs
 - c) for overall reaction ΔGO° has negative value
 - d) a displacement reaction takes place
- 71. Which one of the following is true in electrolytic refining?
 - a) Impure metal is made cathode. b) Impure metal is made anode
 - c) Impure metal is made cathode and pure metal as anode
 - d) Both electrodes must be of pure metal
- 72. Assertion: Sulphide ores are converted to oxides before reduction.

Reason: Oxides are easier to reduce.

a)

If both assertion and reason are true and reason is the correct explanation of assertion.

b)

If both assertion and reason are true but reason is not the correct explanation of assertion

- c) If assertion is true but reason is false. d) If both assertion and reason are false
- 73. For the reduction of FeO with C at the temperature corresponding to (D), which of the following statements is correct?
 - a) Carbon reduces FeO below the temperature at point (D).
 - b) ΔG^{o} value for overall reduction with CO is zero
 - c) ΔG^{o} value for the reaction at point (D) is positive.
 - d) Below point (D), for the metal exists in molten state
- 74. Assertion: Minerals are naturally occurring chemical substances in the earth's crust obtainable by mining.

Reason: Minerals are also known as ores.

a)

If both assertion and reason are true and reason is the correct explanation of assertion.

b)

If both assertion and reason are true but reason is not the correct explanation of assertion.

- c) If assertion is true but reason is false.
- d)

If both assertion and reason are false Only those minerals which are viable to be used as sources of metal are known as ores.

75. Match the column I with column II and mark the appropriate choice Column-I Column-II A) Metals used as semiconductors(i) Aluminium B) Electrolytic reduction (ii) Zone refining C) Cyanide process (iii) Dressing of ZnS (iv) Extraction of Aq D) Froth floatation process a) (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv) b) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (i) c) (A) \rightarrow (iv), (B) \rightarrow (ii), (C) \rightarrow (iii), (D) \rightarrow (i) d) (A) \rightarrow (ii), (B) \rightarrow (i), (C) \rightarrow (iv), (D) \rightarrow (iii) 76. Blister copper obtained during extraction from cuprous oxide is called so because a) it has blister like eruptions due to evolution gas. b) it has a shining surface like blister c) it is the most impure form of copper d) its surface is uneven due to different thickness at different places 77. Following reactions take place during extraction of gold. $4Au + 8CN^{-} + 2H_{2}O + O_{2} \rightarrow 4[Au(CN)_{2}]^{-} + 4OH^{-} 2[Au(CN)_{2}]^{-} + Zn \rightarrow 2Au + [Zn(CN)_{4}]^{2-}$ Zinc in the extraction of gold acts as a/an a) oxidising agent b) flux c) reducing agent d) decomposing agent 78. Assertion: Roasting is a process in which the ore is heated strongly in absence of air. Reason: Concentration of sulphide ore is done by calcination. a) If both assertion and reason are true and reason is the correct explanation of assertion. If both assertion and reason are true but reason is not the correct explanation of assertion c) If assertion is true but reason is false. d) If both assertion and reason are false 79. Considering Ellingham diagram, which of the following metals can be used to reduce alumina? a) Mg b) Zn c) Fe d) Cu 80. The name of the metal which is extracted from the ore is given below. Mark the example which is not correct. a) Malachite - Cu b) Calamine - Zn c) Chromite - Cr d) Dolomite - Al 81. _____ and ____ are alloys of copper a) Brass and bronze b) Brass and alloy steel c) Copper pyrites and malachite d) Copper glance and cuprite 82. Assertion: In electrolytic refining of metal, impur, metal is made cathode while a strip of pure metal is used as anode. Reason: The pure metal gets deposited at anode is anode mud a) If both assertion and reason are true and reason is the correct explanation of assertion. b) If both assertion and reason are true but reason is not the correct explanation of

assertion

	c) If assertion is true but reason is false. d) If both assertion and reason are false
83.	When copper ore is mixed with silica, in a reverberatory furnace copper matte is produced. The copper matte contains
	a) sulphides of copper (II) and iron (II) b) sulphides of copper (II) and iron (III)
	c) sulphides of copper (I) and iron (II) d) sulphides of copper (I) and iron (III).
۹/۱	Arrange the oxides of manganese according to increasing acidic strength.
04.	a) MnO < Mn_3O_4 < Mn_2O_3 < MnO_2 < Mn_2O_7
	b) $Mn_2O_7 < MnOz < Mn_2O_3 < Mn_3O_4 < MnO$
	c) $MnO_2 < Mn_2O_7 < Mn_3O_4 < Mn_2O_3 < MnO$
	d) $Mn_3O_4 < Mn_2O_3 < MnO_2 < MnO_3$
85.	The mineral carnallite contains _(i)_ and(ii)_ metals_(iii)_ is purified by cupellation a
	(iv) is purified by distillation
	a) b)
	$ (i) \qquad (ii) \qquad (iii) \qquad (ii) \qquad (iii) \qquad (iiii) \qquad (iiiii) \qquad (iiiii) \qquad (iiiiii) \qquad (iiiiii) \qquad (iiiiiiiiii$
	calciumzincmercurytin calciummagnesiumzinclead
	c) d)
	(i) (ii) (iii) (iv) (i) (iii) (iv)
	potassium calcium copper mercury magnesium potassium silver mercury
86.	Match the column I with column II and mark the appropriate choice.
	Column-II
	A) van Arkel method(i) Ni
	B) Zone refining (ii) Ti
	C) Mond process (iii) Ag
	D) Cupellation (iv) Ge
	a) $(A) \rightarrow (i)$, $(B) \rightarrow (ii)$, $(C) \rightarrow (iii)$, $(D) \rightarrow (iv)$ b) $(A) \rightarrow (iii)$, $(B) \rightarrow (i)$, $(C) \rightarrow (ii)$, $(D) \rightarrow (iv)$
	$c) \ (A) \rightarrow \ (ii), \ (B) \rightarrow \ (iv), \ (C) \rightarrow \ (i), \ (D) \rightarrow \ (iii) \ d) \ (A) \rightarrow \ (iv), \ (B) \rightarrow \ (iii), \ (C) \rightarrow \ (i), \ (D) \rightarrow \ (iii)$
87.	Which of the following metal evolves hydrogen on reacting with cold dilute HNO ₃ ? a) Mg b) Al c) Fe d) Cu
88.	Most electropositive metals are obtained from their ores by
	a) autoreduction b) smelting with carbon c) electrolysis of fused salts
	a) autoreductionb) smelting with carbonc) electrolysis of fused saltsd) thermal decomposition
89.	, , , , , , , , , , , , , , , , , , , ,
89.	d) thermal decomposition
89.	d) thermal decomposition During the process of electrolytic refining of copper, some metals present as impurity
	d) thermal decomposition During the process of electrolytic refining of copper, some metals present as impurity settle as anode mud: These are:
	d) thermal decomposition During the process of electrolytic refining of copper, some metals present as impurity settle as anode mud: These are: a) Sn and Ag b) Pb and Zn c) Ag and Au d) Fe and Ni Extraction of gold and silver involves leaching the metal with CN ⁻ ion. The metal is recovered by
	d) thermal decomposition During the process of electrolytic refining of copper, some metals present as impurity settle as anode mud: These are: a) Sn and Ag b) Pb and Zn c) Ag and Au d) Fe and Ni Extraction of gold and silver involves leaching the metal with CN ⁻ ion. The metal is recovered by a) displacement of metal by some other metal from the complex ion
	d) thermal decomposition During the process of electrolytic refining of copper, some metals present as impurity settle as anode mud: These are: a) Sn and Ag b) Pb and Zn c) Ag and Au d) Fe and Ni Extraction of gold and silver involves leaching the metal with CN ⁻ ion. The metal is recovered by

	a) Invar b) Steel c) Bell Metal d) Bronze
92.	During extraction of aluminium from bauxite,
	a) the concentration of ore is done by gravity separation method
	b) molten mixture of aluminium oxide, cryolite or fluorspar is electrolysed
	c) impure aluminium is refined by liquation
	d) molten aluminium is obtained at cathode while fluorine is liberated at anode.
93.	Which of the following is a halide ore?
	a) Cassiterite b) Anglesite c) Siderite d) Carnallite
94.	Zone refining is based on the principle that
	a) impurities of low boiling metals can be separated by distillation
	b) impurities are more soluble in molten metal than in solid metal
	c) different components of a mixture are differently adsorbed on an adosrbent
	d) vapours of volatile compound can be decomposed in pure metal
95.	Assertion: Chromatography in general involves a mobile phase (a gas, a liquid or a
	supercritical fluid) and a stationary phase (like Al ₂ O ₃ column).
	Reason : A component which is less soluble in stationary phase takes longer time to
	travel through it than the component which is more soluble in stationary phase
	If both assertion and reason are true and reason is the correct explanation of assertion
	b) If both accortion and reason are true but reason is not the correct evaluation of
	If both assertion and reason are true but reason is not the correct explanation of assertion
	c) If assertion is true but reason is false. d) If both assertion and reason are false
96	Chromatography is a useful method for purification of elements which are
50.	a) very reactive b) available in minute quantities c) present in abundance
	d) highly electropositive
97	What happens when potassium iodide reacts withacidic solution of potassium
57.	dichromate?
	a) It liberates iodine b) Potassium sulphate is formed
	c) Chromium sulphate is formed d) All the above products are formed
98	In a thermite process is used as reducing agent.
	a) Zn b) Al c) Mn d) Fe
99	Which of the following pairs of metal is purified by van Arkel method?
00.	a) Ga and In b) Zr and Ti c) Ag and Au d) Ni and Fe
100	Mark the incorrect statement
100.	a) Copper is extracted by smelting in a reverberatory furnace
	b) Zinc is extracted by reduction of oxide with aluminium
	c) Aluminium is extracted by electrolysis of its oxide
	d) Iron is extracted by reduction of its oxide in blast furnace
101.	Common impurities present in bauxite are

102.	Which of the following statements is not correct? a) Zinc can be extracted from its ore by roasting followed by reduction with coke
	b) In reverberatory furnace, both oxidation and reduction processes can be carried out
	c) Silver is purified by distillation or liquation process.
	d) Highly pure metals are obtained by zone refining.
103	Which of the following is not an example of roasting?
100.	a) $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ b) $2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$
	c) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$ d) $2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$
104	Which of the following changes take place during roasting?
104.	(i) Impurities are removed as their volatile oxides.
	(ii) Ore is converted into its oxide.
	(iii) Changes like oxidation, chlorination, etc. take place.
	a) (i) and (ii) b) (ii) and (iii) c) (i) and (iii) d) (i), (ii) and (iii)
105	Which of the following is not the correct name of the formula of the ore given with it?
	a) b) c)
	MgSO ₄ ·7H ₂ OEpsom salt CuCO ₃ ·Cu(OH) ₂ Malachite KAlSi ₃ O ₈ Feldspar
	d)
	KCI·MgCl ₂ ·6H ₂ ODolomite
106	Carnallite on electrolysis gives
	a) Mg and Cl_2 b) Ca and Cl_2 c) K and Cl_2 d) Al and Cl_2
107.	Which of the following metals is obtained by electrolytic reduction process
	a) Fe b) Cu c) Ag d) Al
108	A number of elements are available in earth's crust but most abundant elements
	are
	a) Al and Fe b) Al and Cu c) Fe and Cu d) Cu and Ag
109	The following reactions take place in the blast furnace in the preparation of impure iron.
	Identify the reaction pertaining to formation of the slag:
	a) $\operatorname{Fe_2O_3}(s) + 3\operatorname{CO}(g) o 2\operatorname{Fe}(l) + 3\operatorname{CO_2}(g)$
	b) $\operatorname{CaCO}_3(s) o \operatorname{CaO}(s) + \operatorname{CO}_2(g)$ c) $\operatorname{CaO}(s) + \operatorname{SiO}_2(s) o \operatorname{CaSiO}_3(s)$
	d) $2\mathrm{C}(s) + \mathrm{O}_2(g) o 2\mathrm{CO}(g)$
110.	The metal oxide reacts with a The oxide is to metal and reducing
	agent isNet Gibbs energy change is
	a) reducing agent, oxidised, reduced, negative
	b) reducing agent, reduced, oxidised, negative
	c) oxidising agent, reduced, oxidised, positive
	d) reducing agent, reduced, oxidised, positive
111.	Silica is added to the sulphide ore of coppe in reverberatory furnace because
	a) sulphide ore of copper contains iron as impurity which is removed as iron slag
	b) silica reacts with Cu-O to form slag c) silica helps in reduction of Cu ₂ O to Cu

a) CuO b) ZnO c) CaO d) SiO₂

- d) sulphide ore of copper is separated from iron' by reacting with silica
- 112. Roasting of sulphides gives the gas X as a by-product. This is a colourless gas with chocking smell of burnt sulphur and causes great damage to respiratory organs as a result of acid rain. Its aqueous solution is acidic, acts as a reducing agent and its acid has never been insolated. The gas X is:
 - a) H₂S b) SO₂ c) CO₂ d) SO₃
- 113. In the metallurgy of aluminium
 - a) Al³⁺is oxidised to Al_(s)
 - b) graphite anode is oxidised to carbon monoxide and carbon dioxide
 - c) oxidation state of oxygen changes in the reaction at anode
 - d) oxidation state of oxygen changes in the overall I reaction involved in the process.
- 114. Impure Ni+4CO $\overbrace{0-80^oC}$ Ni(CO₄) $\underbrace{180^oC}$ Ni + 4CO The above process of purification of the metal is known as
 - a) van Arkel process b) pyrometallurgy c) Mond process d) zone refining.
- 115. Assertion: In froth floatation method, collectors such as pine oil or xanthates are added to the suspension of powdered ore.

Reason: Collectors stabilise the froth

a)

If both assertion and reason are true and reason is the correct explanation of assertion.

b)

If both assertion and reason are true but reason is not the correct explanation of assertion

- c) If assertion is true but reason is false. d) If both assertion and reason are false
- 116. In metallurgical process, aluminium acts as
 - a) an oxidising agent b) a reducing agent c) acidic flux d) basic flux.
- 117. Which of the following statements is correct according to the basic concepts of thermodynamics which govern the feasibility of a metallurgical process?

a)

When the value of i1G is positive for the equation $\Delta G = \Delta H - T \Delta S$, the reaction will proceed

b)

If reactants and products of two reactions are put together and net ΔG is -ve, the overall reaction will occur

- c) On increasing the temperature, the value of ΔG becomes +ve.
- d)

Feasibility of thermal oxidation of an ore can be established by Ellingham diagram in which a straight line shows the reduction reaction will proceed.

- 118. Froth floatation process of concentration is based on the
 - a) preferential wetting properties with the frothing agent and water
 - b) difference in the specific gravities of gangue and ore particles

- c) difference in solubility of gangue and ore particles in frothing agent and water
- d) difference in reactivity of gangue and ore particles with water and frothing agent
- 119. Sometimes it is possible to separate two sulphide ores by adjusting the proportion of oil to water or by using depressants. When a depressant NaCN is added to an ore containing ZnS and PbS, what is the correct observation?
 - a) NaCN prevents PbS from coming to the froth but allows ZnS to come with froth.
 - b) NaCN prevents ZnS from coming to the froth but allows PbS to come with froth
 - c) NaCN prevents frothing of both ZnS and PbS, hence no froth is formed.
 - d) NaCN does not act as depressant hence a mixture of PbS and ZnS is found in froth
- 120. Assertion: Magnesium metal is not used for the reduction of alumina in the metallurgy of aluminium.

Reason: MgO curve lies above Al₂O₃ curve in Ellingham diagram.

a)

If both assertion and reason are true and reason is the correct explanation of assertion.

b)

If both assertion and reason are true but reason is not the correct explanation of assertion

- c) If assertion is true but reason is false. d) If both assertion and reason are false
- 121. Extraction of chlorine from brine is based on:
 - a) reduction b) displacement c) oxidation d) evaporation.
- 122. Which of the following metals cannot be obtained by reduction of its metal oxide by aluminium?
 - a) Cr b) Mn c) Fe d) Mg
- 123. At the point of intersection of Al_2O_3 and MgO curves (A), $\triangle G^o$ becomes zero for the reaction,

$$rac{2}{3}Al_2O_3 + 2Mg \longrightarrow 2MgO + rac{4}{3}Al$$

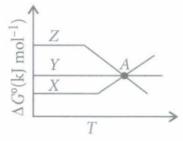
Above this point, magnesium can reduce alumina. Although thermodynamically feasible, Mg is not used for reduction of Al_2O_3 because

- a) temperature required is very high b) the yield of metal is very low
- c) value of, $\triangle G^O$ becomes positive
- d) magnesium is not used as reducing agent for any reaction.
- 124. An ore of tin containing, FeCrO₄ is concentrated by
 - a) gravity separation b) magnetic separation c) froth floatation d) leaching.
- 125. Blister copper is
 - a) impure copper b) obtained in self-reduction process during bessemerisation
 - c) both are correct d) none is correct
- 126. Which of the following statements is correct?
 - (i) Copper is extracted by hydrometallurgy from low grade ores.
 - (ii) In electrolytic reduction of alumina, graphite is acting as anode and steel vessel with

lining of carbon acts as cathode.

- (iii) In Hall-Heroult process, aluminium is obtained at anode and CO and CO_2 are produced at cathode.
- a) (i) only b) (i) and (ii) only c) (ii) and (iii) only d) All of these
- 127. Acidified potassium dichromate reacts with potassium iodide and oxidises it to I₂. What is the oxidation state of chromium in the products of the reaction?
 - a) +4 b) +6 c) +3 d) +2
- 128. Assertion: Tin is refined by liquation method.

Reason: Tin has low melting point as compared to impurities.


a)

If both assertion and reason are true and reason is the correct explanation of assertion.

b)

If both assertion and reason are true but reason is not the correct explanation of assertion

- c) If assertion is true but reason is false. d) If both assertion and reason are false
- 129. In this method, a low melting metal like tin can be made to flow on a sloping surface. In this way it is separated from higher melting impurities. The method is known as
 - a) distillation b) vapour phase refining c) liquation d) zone refining.
- 130. What would happen when a solution of potassium chromate is treated with an excess of dilute nitric acid?
 - a) $Cr_2O_4^{2-}$ is reduced to +3 state of Cr b) $Cr_2O_4^{2-}$ is oxidised to +7 state of Cr.
 - c) ${
 m Cr}^{3+}$ and $Cr_2O_7^{2-}$ are formed d) $Cr_2O_7^{2-}$ and H $_2$ O are formed
- 131. In the following Ellingham diagram, X, Y and Z represent graphs for metal oxides. Select the correct option before point A.

- a) Y will reduce oxide of Z. b) Ywill reduce oxide of X. c) Z will reduce oxide of X.
- d) Z will reduce oxide of Y
- 132. Assertion: Limestone added in the blast furnace decomposes to give CaO which forms slag in molten state and separates out from iron.

Reason: The iron obtained from the blast furnace contains about 4% carbon and many impurities like S, P, Si, Mn, etc.

a)

If both assertion and reason are true and reason is the correct explanation of assertion.

b)

If both assertion and reason are true but reason is not the correct explanation of assertion

	c) If assertion is true but reason is false. d) If both assertion and reason are false					
133.	Aluminium is extracted from alumina (Al_2O_3) by electrolysis of a molten mixture of: a) Al_2O_3 + HF + NaAlF ₄ b) Al_2O_3 + CaF ₂ + NaAlF ₄ c) Al_2O_3 + Na ₃ AlF ₆ + CaF ₂ d) Al_2O_3 + KF + Na ₃ AlF ₆					
134.	In the extraction of copper from its sulphide ore, the metal finally obtained by the reduction of cuprous oxide with a) Iron (ii) sulphide b) Carbon monoxide c) Copper (i) sulphide d) Sulphur dioxide					
135.	Thereaction $Cr_2O_3 + 2AI \rightarrow Al_2O_3 + 2Cr$ ($\Delta G^o = -421$ kJ) is thermodynamically feasible due to -ve value of tJ.G. Why does this reaction not take place at room temperature: a)					
	Certain amount of activation energy is essential for thermodynamically feasible reactions also					
	b) Due to high melting point of chromium oxide the reaction does not take place c) Overall value of ΔG^o for the net reaction becomes positive d) Molecules of Cr_2O_3 and Al are not oriented properly					
136.	The main difference between cast iron and pig iron is					
	a) cast iron is purest form ofiron while pig iron is impure b)					
	cast iron has lower carbon content (3%) as compared to pig iron (4%) and is extremely hard and brittle					
	c)					
	pig iron contains many impurities like S, P, Si and Mn while cast iron does not contain any impurity and can be casted into any shape					
	d) cast iron is soft and malleable while pig iron is extremely hard and brittle					
137.	The oil used as frothing agent in froth floatation process is					
	a) coconut oil b) castor oil c) palmitic oil d) pine oil					
138.	From the Ellingham graph between Gibbs energy and temperature, out of C and CO which is a better reducing agent for ZnO?					
	a) Carbon b) CO c) Both of these d) None of these					
139.	Mark the correct statements					
	(i) Mercury can be refined by the process of distillation.					
	(ii) In poling, the molten impure metal is stirred with green poles of wood.					
	(iii) In electrolytic refining of metals, impure metal is made as cathode and a thin strip of					
	pure metal is made as anode					
	a) (i) and (ii) b) (i) and (iii) c) (ii) and (iii) d) (i), (ii) and (iii)					
140.	A solid compound X on heating gives CO ₂ gas and a residue. The residue mixed with					
	water forms Y. On passing an excess of CO_2 through Y in water, a clear solution Z is obtained. On boiling Z, compound X is reformed. The compound X is					
	a) Ca(HCO ₃) ₂ b) CaCO ₃ c) NaZCO ₃ d) K ₂ CO ₃					
141	Cassiterite is an ore of:					
171.	a) Mn b) Ni c) Sb d) Sn					

- 142. Purification of aluminium by electrolytic refining is known as a) Hall's process b) Baeyer's process c) Hoope's process d) Serpeck's process 143. What is the process of leaching in case of low grade copper ores? a) Leaching is carried out with NaOH and O₂ b) Leaching is carried out with NaCN c) Leaching is carried out with acids in presence of H₂. d) Leaching is carried out by boiling the ore with water 144. Impurities of sulphur, silicon and phosphorus can be removed from cast iron by adding a) carbon which reduces the impurities b) water which dissolves the impurities c) limestone which changes impurities into oxides and pass into slag d) iron oxide which reacts with impurities by forming slag. 145. During the extraction of haernatite, limestone is added which acts as a) flux b) slag c) reducing agent d) gangue 146. Assertion: Nickel is purified by reacting it with CO. Reason: Impurities present, form a volatile complex. a) If both assertion and reason are true and reason is the correct explanation of assertion. b) If both assertion and reason are true but reason is not the correct explanation of assertion c) If assertion is true but reason is false. d) If both assertion and reason are false 147. Pvrolusite is a) a sulphide ore of Mn b) an oxide ore of Mn c) a carbide ore of P d) a chloride ore of Zn 148. Which of the following reactions do not result in the preparation of potassium dichromate from chromate? (I) $4\text{FeCr}_2\text{O}_4 + 8\text{Na}_2\text{CO}_3 + 7\text{O}_2 \rightarrow$ (II) Na₂CrO₄ + H₂SO₄ \rightarrow (III) Na₂CrzO₇ + 2KCl \rightarrow a) (I) and (II) b) (II) and (III) c) (I) and (III) d) (I), (II) and (III) 149. Extraction of gold and silver involves leaching with CN⁻ ion. Silver is later recovered by a) Distillation b) Zone Refining c) Displacement with Zn d) Liquation
- 150. In electro-refining of copper, some gold is deposited as
 - a) cathode mud b) electrolyte c) anode mud d) cathode.
- 151. Match the column I with column II to match the method of extraction and mark the appropriate choice

Column-I Column-II							
Α	Cu	(i)	Direct reduction of sulphide by heating				
В	Sn	(ii)	Electrolysis of fused chloride and fluoride				
С	Hg	(iii)	Partial oxidation of sulphide ore				
D	Ca	(iv)	Reduction of oxide with carbon				

```
a) (A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iv)
     b) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (ii) c) (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv)
     d) (A) \rightarrow (iv), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iii)
152. Ellingham diagram represents change:
     a) \Delta G with temperature b) \Delta H with temperature c) \Delta G with pressure
     d) (\Delta G - T\Delta S) with temperature
153. The materials which can withstand very high temperature without melting or becoming
     soft are called _____ of furnaces.
     a) refractory materials, inner lining b) flux, base c) brick materials, outer structure
     d) mica, outer lining
154. Four metals and their methods of refinement are given,
     (i) Ni, Cu, Zr, Ga
     (ii) electrolysis, van Arkel process, zone refining, Mend's process
     Choose the right method for each
        Ni: Electrolysis, Cu : van Arkel process,
     a) Zr: Zone refining, Ga: Mend's process
        Ni: Monds process, Cu: Electrolysis,
     b) Zr: van Arkel process, Ga: Zone refining
        Ni: Monds process, Cu: van Arkel process,
     c) Zr: Zone refining, Ga: Electrolysis
        Ni: Electrolysis, Cu : Zone refining,
     d) Zr: van Arkel process, Ga: Mend's process
155. Which of the following reactions show the process of smelting?
     a) 2PbO + PbS \rightarrow 3Pb + SO<sub>2</sub> b) 2Na[Au(CN)<sub>2</sub>] + Zn \rightarrow Na2[Zn(CN)<sub>4</sub>] + 2Au
     c) PbO + C \rightarrow Pb + CO d) 2HgS + 3O<sub>2</sub> \rightarrow 2HgO + 2SO<sub>2</sub>
156. Which of the following is magnetite?
     a) Fe_2CO_3 b) Fe_2O_3 c) Fe_3O_4 d) Fe_2O_3 \cdot 3H_2O_3
157. Which one of the following is a mineral of iron?
     a) Malachite b) Cassiterite c) Pyrolusite d) Magnetite
158. Calcium is obtained by the
     a) roasting of limestone b) electrolysis of solution of calcium chloride H<sub>2</sub>O
     c) electrolysis of molten anhydrous calcium chloride
     d) reduction of calcium chloride with carbon
159. Cryolite and fluorspar are mixed with Al<sub>2</sub>O<sub>3</sub> during electrolysis for extraction of aluminium
     to
     a) increase the mass of the reaction mixture
     b) get other products at anode like fluorine
     c) lower the melting point and increase the conductivity of the electrolyte
     d) reduce aluminium oxide by cryolite
160. Choose the correct option of temperature at which carbon reduces FeO to iron and
     produces CO.
```

	a) Below temperature at point Ab) Approximately at the temperature corresponding to point Ac) Above temperature at point A but below temperature at point Dd) Above temperature at point A							
161.	. In which of the following the name of the ore is not matched with its formula? a) Cassiterite - SnO ₂ b) Limonite - Fe ₂ O ₃ ·3H ₂ O c) Siderite - FeCO ₃ d) Anglesite - PbCO ₃							
162.	2. Which of the following statements, about the advantage of roasting of sulphide ore before reduction is not true? a) Carbon and hydrogen are suitable reducing agents for metal sulphides b) The Δ_f G ⁰ of the sulphide is greater than those for CS ₂ and H ₂ S c) The Δ_f G ⁰ is negative for roasting of sulphide ore to oxide d) Roasting of the sulphide to the oxide is thermodynamically feasible							
163.	3. In the extraction of copper from its sulphide ore, the metal is formed by the reduction of Cu ₂ O with a) FeS b) CO c) Cu ₂ S d) SO ₂							
164.	 4. Sulphides ores are converted to oxides before reduction. This is explained on the basis of which of the following? a) Sulphides cannot be reduced easily while oxides can be reduced easily b) Sulphides decompose on reduction hence they are first converted to oxides. c) Sulphide ores have higher melting points than oxides d) Oxides are more stable than sulphides hence easy to reduce 							
165.	Find the incorrect match.							
	a) Kaolinite[Al ₂ (OH) ₄ Si ₂ O ₅]	b) Siderite Fe ₂ O ₃	c) SphaleriteZnS	d) MagnetiteFe ₃ O ₄				
166.	6. Which of the following reactions does not take place during leaching for concentration of bauxite? a) $Al_2O_3 + 2NaOH + 3H^2O \rightarrow 2Na[Al(OH)_4]$ b) $Al_2O_3 + 2NaOH + 3H^2O \rightarrow 2Na[Al(OH)_4]$ c) $Al_2O_3 \cdot 2H_2O \stackrel{\triangle}{\rightarrow} Al_2O_3 + 2H_2O$ d) $Al_2O_3 \cdot xH_2O \stackrel{\triangle}{\rightarrow} Al_2O_3 + xH_2O$							
167.	The reaction of H ₂ O ₂ with a) addition b) oxidation	hydrogen sulphic		of reaction:				