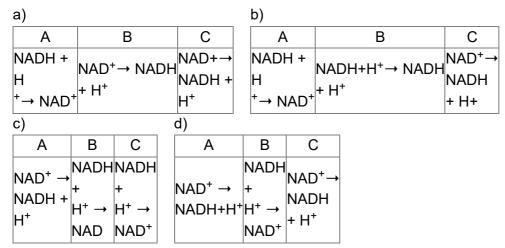

RAVI MATHS TUITION CENTRE, WHATSAPP - 8056206308


Time: 1 Mins RESPIRATION OF PLANTS 1 Marks: 892

- 1. RQ of fats and proteins is generally
 - a) 1 b) <1 c) >1 d) α
- 2. Which of the following steps is associated with ATP formation (substrate level phosphorylation)?
 - a) Succinyl CoA ~ Succinic acid b) 1, 3 bisPGA → 3 PGA c) PEP → Pyruvate
 - d) All of these
- 3. Number of multiprotein complexes involved in ETS and oxidative phosphorylation of mitochondria is
 - a) Three b) Four c) Five d) Six
- 4. How many ATP molecules could maximally be generated from one molecule of glucose, if the complete oxidation of one mole of glucose to CO₂ and H₂O yields 686 Kcal end the useful chemical energy available in the high energy phosphate bond of one mole of ATP is 12 kcal?
 - a) Thirty b) Fifty-seven c) One d) Two
- 5. Match the following and choose the correct option from those given below.

Column I	Column II
A. Molecular oxygen	i. α- ketoglutaric acid
B. Electron acceptor	ii. Hydrogen acceptor
C. Pyruvate dehydrogenase	iii. Cytochrome C
D. Decarboxylation	iv. Acetyl Co A

- a) A-ii, B-iii, C-iv, D-i b) A-iii, B-iv, C-ii, D-i c) A-ii, B-i, C-iii, D-iv d) A-iv, B-iii, C-i, D-ii
- 6. What does A, B and C depict in the given pathways of anaerobic respiration?

- 7. Which of the following conversions involve ATP synthesis during glycolysis?
 - a) Glucose → Glucose 6- phosphate
 - b) Fructose-6-phosphate \rightarrow Fructose-1,6-biphosphate
 - c) 1,3-bisphosphoglyceric acid (BPGA) \rightarrow 3-phosphoglyceric acid (PGA) d) All of these
- 8. Identify P, Q, R and S in the given diagram of electron transport system.

- 9. The energy-releasing process in which the substrate is oxidised without an external electron acceptor is called .
 - a) fermentation b) photorespiration c) aerobic respiration d) glycolysis
- 10. EMP can produce a total of____
 - a) 6 ATP b) 8 ATP c) 24 ATP d) 38 ATP
- 11. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as :

Assertion: Fermentation is the incomplete oxidation of glucose into lactic acid or ethanol.

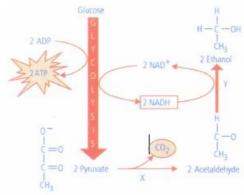
Reason: It takes place under anaerobic conditions in prokaryotes only.

- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b)

If both assertion and reason are true but reason is not the correct explanation of assertion.

- c) If assertion is true but reason is false. d) If both assertion and reason are false.
- 12. Value of RQ in succulents is
 - a) unity b) infinite c) less than unity d) zero
- 13. Oxidative phosphorylation is
 - a) Formation of ATP energy released from electrons removed during substrate oxidation
 - b) Formation of ATP by transfer of phosphate group from a substrate to ADP
 - c) Oxidation of phosphate group in ATP d) Addition of phosphate group to ATP
- 14. Which of the following is a 4-carbon compound?
 - a) Oxaloacetic acid b) Phosphoglyceric acid c) Ribulose bisphosphate
 - d) Phosphoenol pyruvate
- 15. In the electron transport system present in the inner mitochondrial membrane complexes I and IV are respectively
 - a) NADH dehydrogenase and FADH₂ b) FADH₂ and NADH dehydrogenase
 - c) NADH dehydrogenase and cytochrome c oxidase complex
 - d) NADH dehydrogenase and ATP synthase
- 16. In the following questions, a statement of assertion is followed by a statement of reason. Mark the correct choice as :

Assertion: The metabolic pathway through which the electron passes from one carrier to another is called the electron transport system (ETS).


Reason: ETS is present in the inner mitochondrial membrane.

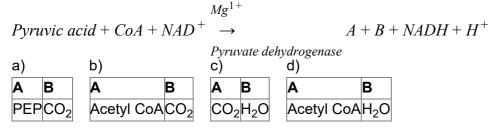
- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false
- 17. Match column I with column II and select the correct option from the codes given below.

Column I	Column II
A. Fats made of three fatty acid chains attached to glycerol	(i) Glycogen
B. Glycolysis metabolite made from glycerol	(ii) Glyceraldehyde
C. Storage form of glucose	(iii) Triglycerides
D. Common respiratory substrate of glycolysis	(iv) Glucose
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\

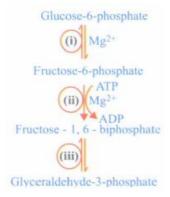
- a) A-(iv), B-(ii), C-(i), D-(iii) b) A-(iii), B-(ii), C-(i), D-(iv) c) A-(iv), B-(iii), C-(i), D-(ii)
- d) A-(i), B-(ii), C-(iii), D-(iv)
- 18. Which of the following is link between carbohydrate ansd fat metabolism?
 - a) CO₂ b) Acetyl Co-A c) Pyruvic acid d) Citric acid

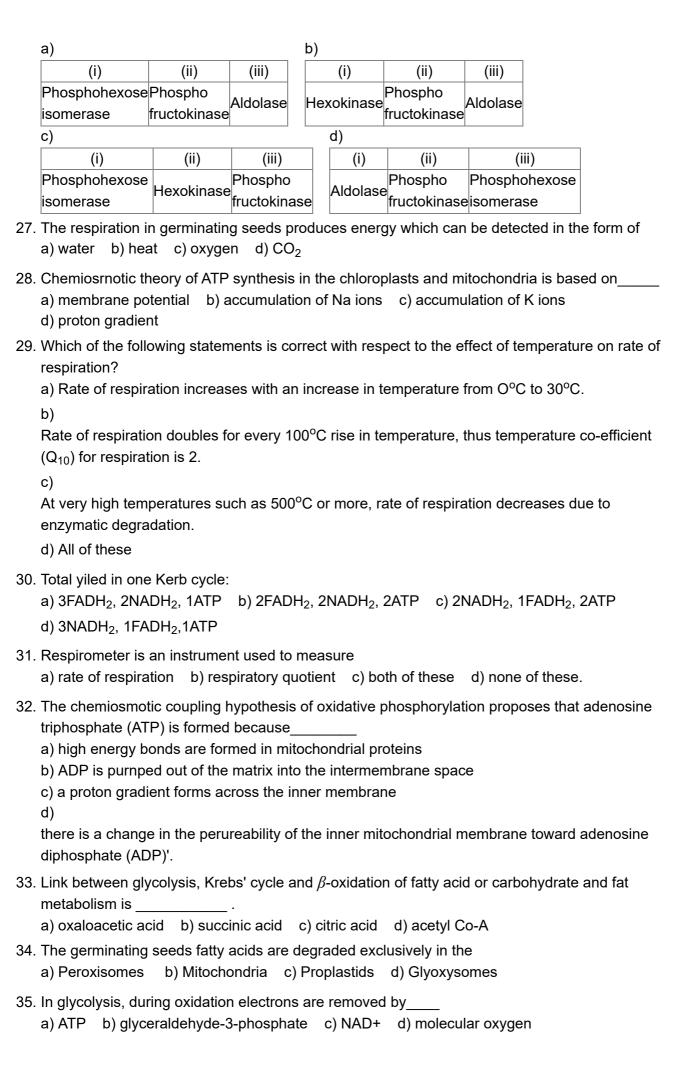
19. Select the incorrect statement with respect to the given representation

a) X is the enzyme pyruvate dehydrogenase and Y is the enzyme ethanol decarboxylase.

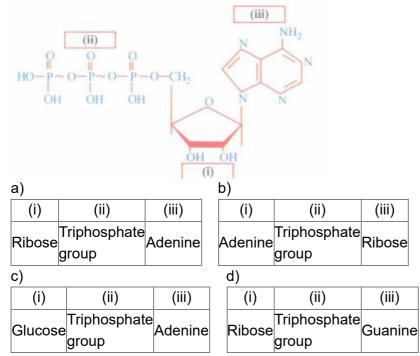

b)

This process is involved in brewing industry for producing beverages like beer, rum, whisky, etc.


c)


Accumulation of the end product (i.e., ethanol) during this process, in a culture of yeast, stops the multiplication of yeast cells and may even lead to death of cells.

- d) None of these
- 20. Pyuvate dehydrogenase complex is used ion converting
 - a) Pyurvate to glucose b) Glouse to pyruvate c) Pyruvic acid to lactic acid
 - d) Pyruvate to acetyl Co-A
- 21. Identify A and B in the given reaction.



- 22. Phytochrome is a
 - a) flavoprotein b) glycoprotein c) lipoprotein d) chromoprotein
- 23. End product of citric acid/Krebs' cycle is
 - a) citric acid b) lactic acid c) pyruvic acid d) CO₂+H₂O
- 24. RQ in anaerobic respiration is
 - a) 0.7 b) 0.9 c) unity d) infinity.
- 25. Curing of tea leavesis brught by the activity of
 - a) viruses b) fungl c) bacteria d) mycorhiza
- 26. Study the given steps of glycolysis and identify the enzymes (i), (ii) and (iii) responsible for carrying out these steps.

36. Identify the three components [(i), (ii) and (iii)] of ATP molecule shown in the given figure.

- 37. In which one of the following processes CO₂ is not released?
 - a) Aerobic respiration in plants b) Aerobic respiration in animals c) Alcoholic fermentation
 - d) Lactate fermentation
- 38. Identify the correct terms for the given statements and select the correct answer
 - (i) Sudden increase in the rate of respiration during ripening of fruits.
 - (ii) Reduction in the consumption of respiratory substrate when mode of respiration is changed from anaerobic to aerobic.
 - (iii) Respiratory oxidation of carbohydrates and fats.

a)

Pasteur effect	Floating respiration	Climacteric respiration
(i)	(ii)	(iii)

b)

Pasteur effect	Floating respiration	Climacteric respiration
(ii)	(iii)	(i)

c)

Pasteur effect	Floating respiration	Climacteric respiration
(iii)	(ii)	(i)

d)

Pasteur effect	Floating respiration	Climacteric respiration
(ii)	(i)	(iii)

- 39. Enzyme of cyctchrome oxidase can be inhibited by:
 - a) Iodo acetate b) Azides & cycanides c) Olignomycins d) Dintrophenol
- 40. Fermentation is represented by the equation

a)
$$C_6H_{12}O_6 \rightarrow 6O_2 + 6H_2O + 686 \text{ kcal}$$
 b) $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 + 59 \text{ kcal}$ c) $6CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$ d) $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

- 41. How many ATP will be produced during the production of 1 molecule of Accetyl Co-A from 1 molecule of pyruvic acid?
 - a) 3 ATP b) 5 ATP c) 8 ATP d) 38 ATP

- 42. A test tube containing molasses solution and yeast is kept in a warm place overnight. The gas collected from this mixture
 - a) extinguishes the flame b) bursts into flame when ignited c) turns lime water milky
 - d) both (a) and (c).
- 43. What is the role of NAD+ in cellular respiration?
 - a) It is a nucleotide source for ATP synthesis b) It functions as an electron carrier
 - c) It functions as an enzyme d) It is the final electron acceptor for anaerobic respiration
- 44. Which of the following options does not hold good regarding anaerobic respiration or fermentation?
 - a) Occurs inside the mitochondria b) Partial breakdown of glucose occurs
 - c) Net gain of only 2 ATP molecules d) None of these
- 45. Select the wrong statement.

a)

Oxidative decarboxylation of pyruvic acid requires the presence of enzyme pyruvate dehydrogenase.

- b) All living cells whether aerobic or anaerobic, perform glycolysis.
- c) Cyanide does not stop chemiosmosis.
- d) Respiratory chain uses O₂ as final hydrogen acceptor.
- 46. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as :

Assertion: Glycolysis is also called EMP pathway

Reason: It is the only process of respiration in aerobic organisms

a) If both assertion and reason are true and reason is the correct explanation of assertion

If both assertion and reason are true but reason is not the correct explanation of assertion.

- c) If assertion is true but reason is false d) If both assertion and reason are false.
- 47. In glycolysis net gain of ATP directly is
 - a) 2 ATP b) 6 ATP c) 8 ATP d) 1 ATP
- 48. Match column I with column II and select the correct option from the codes given below.

Column I	Column II
A. TCA cycle	(i) Inner mitochondrial membrane
B. F ₀ - F ₁ particles	(ii) Hans Krebs
C. End product of glycolysis	(iii) Oxidative decarboxylation
D. Pyruvate dehydrogenase	(iv) Pyruvic acid

- a) A-(ii), B-(i), C-(iv), D-(iii) b) A-(i), B-(ii), C-(iv), D-(iii) c) A-(ii), B-(iii), C-(iv), D-(i)
- d) A-(iii), B-(ii), C-(i), D-(iv)
- 49. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as:

Assertion: Anaerobic respiration sometimes occurs in our skeletal muscles during strenous exercise.

Reason: Pyruvic acid is reduced to lactic acid by lactate dehydrogenase in the absence of oxygen

- a) If both assertion and reason are true and reason is the correct explanation of assertion.
- b) If both assertion and reason are true but reason is not the correct explanation of assertion

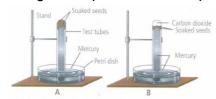
- c) If assertion is true but reason is false d) If both assertion and reason are false
- 50. Krebs' cycle is also called metabolic sink as it is a common pathway for:
 - a) carbohydrates, fats and proteins (amino acids) b) carbohydrates and fats only
 - c) carbohydrates and organic acids only d) proteins and fats only
- 51. Fermentation is anaerobic production of
 - a) protein and acetic acid b) atcohol, lactic acid or similar compounds
 - c) ethers and acetones d) alcohol and lipoproteins
- 52. An organic substance bound to an enzyme and essential for its activity is called
 - a) Apoenzyme b) Isoenzyme c) Coenzyme d) Holoenzyme
- 53. Refer the given equation.

$$2(C_{51}H_{98}O_6) + 145O_2 \rightarrow 102CO_2 + 98H_2O + Energy$$

The RQ in this case is:

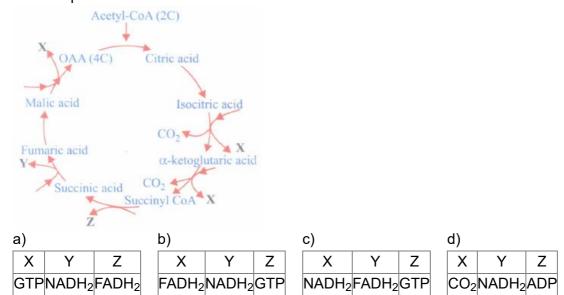
- a) 1 b) 0.7 c) 1.45 d) 1.62
- 54. Which statement is wrong for Kreb's cycle?
 - a) There are three point in the cycle where NAD+ is reduced to NADH + H+
 - b) There is one point in the cycle where FAD+ is reduced to FADH2
 - c) During conversion of succinyl CoA to succine acid, a molecule of GTP is synthesised

d)


The cycle starts with condensation of acetyl group (acetyl CoA) with pyruvic acid to yield citric acid

55. Read the given statements and select the correct option.

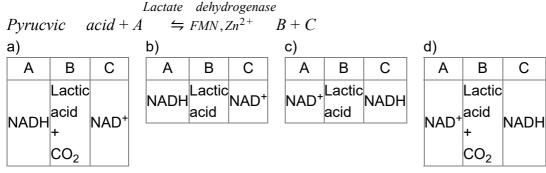
Statement 1: Glycolysis occurs in mitochondrial matrix.


Statement 2: Krebs' cycle occurs on cristae of mitochondria.

- a) Both statements 1 and 2 are correct. b) Statement 1 is correct but statement 2 incorrect.
- c) Statement 1 is incorrect but statement 2 is correct
- d) Both statements 1 and 2 are incorrect
- 56. When one glucose molecule is completely oxidised, it changes
 - a) 36 ADP molecules into 36 ATP molecules b) 38 ADP molecules into 38 ATP molecules
 - c) 30 ADP molecules into 30 ATP molecules d) 32 ADP molecules into 32 ATP molecules
- 57. The given experimental set-up demonstrates

a) photosynthesis b) aerobic respiration c) anaerobic respiration d) ascent of sap

58. Identify X, Y and Z in the given diagram representing steps of citric acid cycle and select the correct option.

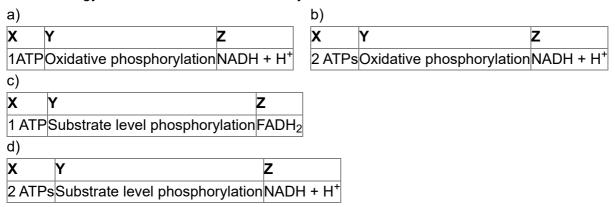


59. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as :

Assertion: Oxidation of one molecule of NADH gives rise to 3 molecules of ATP and that of one molecule of FADH₂ produces 2 molecules of ATP.

Reason: The number of ATP molecules synthesised depends on the nature of the electron donor.

- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false
- 60. In alcoholic fermentation
 - a) oxygen is the electron acceptor.
 - b) triose phosphate is the electron donor while acetaldehyde is the electron acceptor.
 - c) triose phosphate is the electron donor while pyruvic acid is the electron acceptor.
 - d) there is no electron donor
- 61. Identify A, B and C in the given reaction of lactic acid fermentation and select the correct option.


- 62. Percentage of energy in glucose released by both lactic acid and alcoholic fermentation is a) 5-10% b) Less than 7% c) More than 13% d) 45%
- 63. What is true about the end products of glycolysis?
 - a) 2 pyruvic acid + 2ATP + 2NADH₂ b) 2 pyruvic acid + 2NADH₂
 - c) 1 pyruvic acid + 2ATP + 2NADH₂ d) 2 pyruvic acid + 1ATP + 1NADH₂
- 64. Which of the following an intermediate in Kerbs cycle?
 - a) Axetic acid b) Succeinyl conezyme-A c) Mallic acid d) Citric acid

- 65. Fermentation products of yeast are
 - a) H₂O + CO₂ b) methyl alcohol + CO₂ c) methyl alcohol + H₂O d) ethyl alcohol + CO₂
- 66. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as :

Assertion: During aerobic respiration, pyruvic acid formed as a result of glycolysis, undergoes phosphorylation reaction to form acetyl CoA.

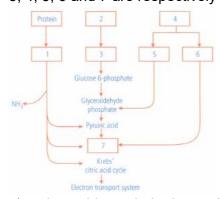
Reason: There is net gain of 18 ATP molecules during aerobic respiration of one molecule of glucose.

- a) If both assertion and reason are true and reason is the correct explanation of assertion.
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false.
- 67. At the end of glycolysis, X is the net energy gain from one molecule of glucose via Y, but there is also energy stored in the form of Z. Identify X, Y and Z.

- 68. How many ATP molecules will be generated in a plant system during complete oxidation of 40 molecules of glucose?
 - a) 180 b) 360 c) 1440 d) 3040
- 69. Alternate name of Krebs' cycle is
 - a) TCA cycle b) citric acid cycle c) both (a) and (b) d) none of these.
- 70. Select the correct statement.
 - a) When ATP is synthesised directly from metabolites, it is substrate level phosphorylation.
 - b) In Krebs' cycle, citrate undergoes 2 decarboxylations and 4 dehydrogenations.
 - c) Krebs' cycle is an amphibolic process d) All of these
- 71. Instantaneous source of energy is
 - a) proteins b) fats c) nucleic acids d) glucose.
- 72. The essential chemical components of many coenzymes are:
 - a) Vitamins b) Proteins c) Nucleic acids d) Carbohydrates
- 73. Last e⁻ acceptor during ETS is
 - a) O_2 b) cyt a c) cyt a_2 d) cyt a_3
- 74. Consider the first reaction of TCA cycle

What is true about compound A?

- a) First product of TCA cycle b) Tricarboxylic acid and six carbon compound
- c) It undergoes reorganisation in the presence of enzyme aconitase to form cis-aconitate
- d) All of these
- 75. During complete metabolism of glucose, the number of ATP formed is:

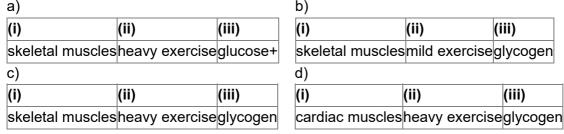

- a) 2 b) 12 c) 36 d) 44
- 76. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as:

Assertion: This conversion of 1, 3-bishosphoglycerate (BPGA) to s-phosphoglyceric acid (PGA) is an energy yielding step.

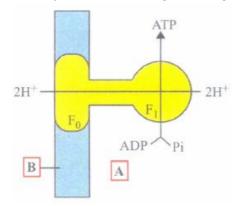
Reason: This energy is trapped by the formation of ATP.

- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false
- 77. The bacterium (Clostridium botulinum) that causes botulism is
 - a) an obligate anaerobe b) an facultative aerobe c) an obligate aerobe
 - d) a facultative anaerobe
- 78. The mechanism of ATP formation both in chloroplast and mitochondria is explained by

 - a) relay pump theory of Godlewski b) Munch's pressure/mass flow model
 - c) chemiosmotic theory of Mitchell d) Cholondy-Went's model
- 79. The net gain of ATP molecules in glycolysis during aerobic respiration is
 - a) 0 b) 2 c) 4 d) 8
- 80. Aerobic respiratory pathway is appropriately termed
 - a) parabolic b) amphibolic c) anabolic d) catabolic
- 81. Which complex contains cytochromes a and a₃ and two copper centres?
 - a) NADH dehydrogenase complex b) FADH reductase c) Cytochrome bc₁ complex
 - d) Cytochrome c oxidase complex
- 82. In most eukaryotic cells, number of ATP net generated from one glucose molecule is
 - a) 38 b) 36 c) 34 d) 32
- 83. Refer to the following flow chart representing the cellular respiration and its fuels. Blanks 1, 2, 3, 4, 5, 6 and 7 are respectively



- a) amino acids, carbohydrate, glucose, fats, glycerol, fatty acid, acetyl Co-A
- b) fats, acetyl Co-A, amino acid, fatty acid, carbohydrate, glycerol, glucose
- c) fatty acid, glucose, acetyl Co-A, glycerol, fats, carbohydrate, amino acid
- d) carbohydrate, fats, glycerol, fatty acids, amino acid, glucose, acetyl Co-A.
- 84. Sequence of food materials consumed during repiration is:
 - a) Firstly \rightarrow carbohydrate \rightarrow fats \rightarrow proteins b) Carbohydrate \rightarrow proteins \rightarrow fats
 - c) Proteins \rightarrow fats \rightarrow carbohydrate d) Fats \rightarrow proteins \rightarrow carbohydrate
- 85. Which of these statements is incorrect?
 - a) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms
 - b) Glycolysis occurs in cytosol


	d) Oxidative phosphorylation takes place in outer mitochondrial membrane
86.	The chemiosmotic coupling hypothesis of oxidative phosphorylation proposes that adenosine triphosphate (ATP) is form because:
	a) A proton gradient forms across the inner membrane
	b) There is a change in the permeability of the inner mitochondrial membrane toward adenosine diphosphate (ADP)
	c) High energy bonds are formed in mitochondrial proteins
	d) ADP is pumped out of the matrix into the intermembrane space
87.	Net gain of ATP molecules during aerobic respiration is a) 36 molecules b) 38 molecules c) 40 molecules d) 48 molecules
88.	Study the incorrect statement with respect to an overview of the electron transport system (ETS).
	a) Ubiquinone receives reducing equivalents vie., FADH2 (complex II)that is generated during oxidation of succinate in the TCA cycle.
	b) As the electrons move down the system, energy is released and used to form ATP
	c)
	2ATPs are formed for every pair of electrons that enters by way of NADH and 3ATPs are formed for every pair of electrons that enters by way of FADH ₂
	d) Oxygen, the final e acceptor becomes a part of water.
89.	ATP is injected in cyanide poisoning because it is a) necessary for cellular functions b) necessary for Na ⁺ - K ⁺ pump c) Na ⁺ - K ⁺ pump operates at the cell membranes d) ATP breaks down cyanide
90.	Identify enzyme A in the given reaction of Krebs' cycle. $^{\it A}$
	$OAA(4C) + Acetyl - CoA + H_20 \rightarrow Citric\ acid(6C) + CoA$
	a) Oxaloacetate synthetase b) Citrate synthase c) Aconitase d) Dehydrogenase
91.	During electron transport system (ETS), electron transport proceeds from carriers that have redox potential to those having redox potential. This electron transport down the energy gradient leads to the formation of ATP from ADP and Pi, which is referred to as
	a) low, high, oxidative phosphorylation b) low, high, oxidative decarboxylation
	c) high, low, oxidative phosphorylation d) high, low, oxidative decarboxylation
92.	In addition to the normal process of oxidation of carbohydrates through glycolysis and Krebs' cycle, there is another process by which plants could oxidise carbohydrates to obtain energy. In this process, hexose sugars undergo oxidative degradation through 5-C sugar intermediates and hence it is known as Pentose phosphate pathway (PPP). Which of the following statements is not true with regard to PPP?
	a) It is an alternative to glycolysis and also acts as a safety valve or shunt to glycolysis
	b) It is common in plants and occurs in certain specialised tissues of animal body, e.g., liver, adipose tissue, testes, ovary, adrenal cortex, lactating mammary gland, eye lens and cornea.

c) Enzymes of TCA cycle are present in mitochondrial matrix

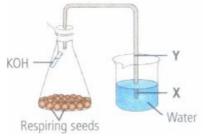
- c) It occurs only in cytoplasm but not in any cell organelle. d) It is also called as hexose monophosphate shunt (HMP pathway).
- 93. Pyruvate dehydrogenase is used in converting
 - a) glucose to pyruvate b) pyruvic acid to lactic acid c) pyruvate to acetyl CoA
 - d) pyruvate to glucose
- 94. Krebs' cycle starts with the formation of a six carbon compound by reaction between
 - a) fumaric acid and pyruvic acid b) OAA and acetyl CoA c) malic acid and acetyl CoA
 - d) succinic acid and pyruvic acid
- 95. Though vertebrates are aerobes, but their (i) show anaerobic respiration during (ii) During this, (iii) of skeletal muscle fibres is broken down to release lactic acid and energy. Lactic acid, if accumulates causes muscle fatigue. Fill up the blanks in the above paragraph and select the correct option

- 96. Incomplete oxidation of glucose into pyruvic acid with several intermediate steps is known as
 - a) TCA-pathway b) glycolysis c) HMS-pathway d) Krebs'cycle
- 97. Mercury (Hg) is generally used in anaerobic respiration experiments because it does not react with
 - a) O_2 b) CO_2 c) H_2O d) air
- 98. Study the following statements regarding chemiosmotic hypothesis in mitochondria and select the correct ones.
 - (i) F_1 headpiece contains the site for the synthesis of ATP from ADP + Pi.
 - (ii) F_0 part forms the channel through which protons cross the inner membrane.
 - (iii) For each ATP produced, 2W pass through F₀ from the intermembrane space to the matrix down the electrochemical proton gradient.
 - a) (i) and (ii) b) (ii) and (iii) c) (i) and (iii) d) (i), (ii) and (iii)
- 99. Identify A and B in the given diagram showing ATP synthesis in mitochondria.

A = Mitochondrial matrix

A = Mitochondrial matrix

a) B = Outer mitochondrial membrane b) B = Inner mitochondrial membrane


A = Cell cytoplasm

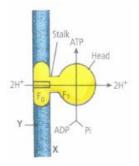
A = Cell cytoplasm

- c) B = Inner mitochondrial membrane d) B = Outer mitochondrial membrane
- 100. Which of the following is essential for conversion of pyruvic acid into acetyl Co-A?

	a) LAA b) NAD+ c) TPP d) All of these		
101.	Which of the following steps of respiration is amphibolic? a) Glycolysis b) Oxidative decarboxylation of pyruvate c)	TCA cycle	
	d) Oxidative phosphorylation		
102.	Which component of ETS is mobile,e ⁻ cerrier? a) UQ(CO-Q) b) Cyto a c) Cyto-b d) Cyto-f		
103.	Which of the following statements regarding metabolic paths a) Many of the steps of glycolysis can run in reverse	vays is incorrect	?
	b) Starch, sucrose or glycogen must be hydrolysed before it	can enter the gl	ycolysis
	c) After fats are digested, glycerol enters glycolysis by formi	ng DHAP.	
	d) After fat digestion, fatty acids can no longer participate in	cellular respirati	on.
104.	Respiratory quotient (RQ) for fatty acid is a) > 1 b) < 1 c) 1 d) 0		
105.	Amount of energy released during hydrolysis of a high energy a) 73 kcal rnol ⁻¹ b) 0.73 kcal mol ⁻¹ c) 3.4 kcal rnol ⁻¹ d)	• •	s
106.	Number of oxygen atoms required for aerobic oxidation of o a) 5 b) 8 c) 10 d) 12	ne pyruvate-	
107.	The following ie required both by the process of respirtion as a) Carbohydrates b) Sunlight c) Chlorophyll d) Cytochi	•	is
108.	In Krebs' cycle, OAA accepts acetyl CoA to form a) citric acid b) oxalosuccinate c) fumarate d) succinyl	CoA	
109.	The balance sheet for ATP production in glycolysis has been which correctly fills up the blanks for P,0, Rand S. ['X' stands	n given below. S	elect the option
109.	which correctly fills up the blanks for P,0, Rand S. ['X' stands	n given below. S s for 'nil'].	elect the option ATP Production
109.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps Glucose → Glucose-6-phosphate	n given below. S s for 'nil']. ATP Utilisation	
109.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate	n given below. S s for 'nil']. ATP Utilisation P	ATP Production X Q
109.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate 3. 1, 3-bisphosphoglyceric acid → 3-Phosphoglyceric acid	n given below. S s for 'nil']. ATP Utilisation P 1	ATP Production X Q R
109.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate 3. 1, 3-bisphosphoglyceric acid → 3-Phosphoglyceric acid 4. 2-Phosphoenol pyruvic acid → Pyruvic acid	n given below. S s for 'nil']. ATP Utilisation P 1	ATP Production X Q
109.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate 3. 1, 3-bisphosphoglyceric acid → 3-Phosphoglyceric acid	n given below. S s for 'nil']. ATP Utilisation P 1	ATP Production X Q R
	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate 3. 1, 3-bisphosphoglyceric acid → 3-Phosphoglyceric acid 4. 2-Phosphoenol pyruvic acid → Pyruvic acid a) b) c) d) PQRS PQRS	n given below. S s for 'nil']. ATP Utilisation P 1 X	ATP Production X Q R
110.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate 3. 1, 3-bisphosphoglyceric acid → 3-Phosphoglyceric acid 4. 2-Phosphoenol pyruvic acid → Pyruvic acid a) b) c) d) PQRS PQRS PQRS PQRS PQRS TXX2 TX2 TX2 TX1 TX	n given below. S s for 'nil']. ATP Utilisation P 1 X	ATP Production X Q R
110. 111.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate 3. 1, 3-bisphosphoglyceric acid → 3-Phosphoglyceric acid 4. 2-Phosphoenol pyruvic acid → Pyruvic acid a) b) c) d) PQRS PQRS PQRS PQRS PQRS PQRS 1XX2 1X2X 21X1 X12X Which of these are respiratory poisons or inhibitors of ETC? a) Cyanides b) Antimycin A c) Carbon monoxide d) All NADP+ is reduced to NADPH in	n given below. So for 'nil']. ATP Utilisation P 1 X S of these	ATP Production X Q R 2
110. 111. 112.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate 3. 1, 3-bisphosphoglyceric acid → 3-Phosphoglyceric acid 4. 2-Phosphoenol pyruvic acid → Pyruvic acid a) b) c) d) PQRS PQRS PQRS PQRS PQRS PQRS X1 2 X 1 X X 2 1 X 2 X 2 1 X 1 X 1 2 X Which of these are respiratory poisons or inhibitors of ETC? a) Cyanides b) Antimycin A c) Carbon monoxide d) All NADP+ is reduced to NADPH in a) HMP b) Calvin cycle c) glycolysis d) EMP Dough kept overnight in warm weather becomes soft and specific products Step S Step S Step S Step S Step S A	n given below. So for 'nil']. ATP Utilisation P 1 X S of these congy due to ermentation d)	ATP Production X Q R 2
110. 111. 112. 113.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate 3. 1, 3-bisphosphoglyceric acid → 3-Phosphoglyceric acid 4. 2-Phosphoenol pyruvic acid → Pyruvic acid a) b) c) d) PQRS PQRS PQRS PQRS PQRS 1XX2 1X2X 21X1 X12X Which of these are respiratory poisons or inhibitors of ETC? a) Cyanides b) Antimycin A c) Carbon monoxide d) All NADP+ is reduced to NADPH in a) HMP b) Calvin cycle c) glycolysis d) EMP Dough kept overnight in warm weather becomes soft and span absorption of CO₂ from atmosphere b) imbibition c) fer Number of total ATP generated through TCA cycle per pyruventers.	a given below. So for 'nil']. ATP Utilisation P 1 X S of these congy due to ermentation d) ric acid molecule	ATP Production X Q R 2
110. 111. 112. 113.	which correctly fills up the blanks for P,0, Rand S. ['X' stands Steps 1. Glucose → Glucose-6-phosphate 2. Fructose-6-phosphate → Fructose-1, 6-bisphosphate 3. 1, 3-bisphosphoglyceric acid → 3-Phosphoglyceric acid 4. 2-Phosphoenol pyruvic acid → Pyruvic acid a) b) c) d) PQRS PQRS PQRS PQRS PQRS 1 X X 2 1 X 2 X 2 1 X 1 X 1 2 X Which of these are respiratory poisons or inhibitors of ETC? a) Cyanides b) Antimycin A c) Carbon monoxide d) All NADP+ is reduced to NADPH in a) HMP b) Calvin cycle c) glycolysis d) EMP Dough kept overnight in warm weather becomes soft and span absorption of CO₂ from atmosphere b) imbibition c) fer Number of total ATP generated through TCA cycle per pyruval 10 b) 12 c) 14 d) 24 Substrate level phosphorylation (GTP synthesis) occurs during the property of the posphorylation (GTP synthesis) occurs during the property of the posphorylation (GTP synthesis) occurs during the property of the posphorylation (GTP synthesis) occurs during the property of the propert	a given below. So for 'nil']. ATP Utilisation P 1 X S of these congy due to ermentation d) ric acid molecule	ATP Production X Q R 2

- a) End products of alcoholic fermentation Ethanol + CO₂ b) End products of lactic acid fermentation - Lactic acid + CO₂ c) Glycolysis - Cytoplasm d) Key product of glycolysis - Pyruvic acid 116. The number of ATP molecules produced by electron transport system from kreb's cycle intermediates in a single turn is a) 11 b) 14 c) 12 d) 16 117. Complete the following biochemical equation of respiration and select the correct answer $C_6H_{12}O_6 + 6O_2 \longrightarrow$ a) $6CO_2 + 12Hp + Energy$ b) $12CO_2 + 4H_2O + Energy$ c) $12CO_2 + 6H_2O + Energy$ d) $6CO_2 + 6H_2O + Energy$ 118. Name the enzyme responsible for oxidative decarboxylation during aerobic respiration. a) Pyruvate dehydrogenase b) Succinate dehydrogenase c) Pyruvate kinase d) Citrate synthase 119. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as: Assertion: Complex II and complex III of ETS are NADH dehydrogenase and cytochrome oxidase complex respectively. Reason: Cytochrome c acts as a mobile carrier for transfer of electrons between complex II and III a) If both assertion and reason are true and reason is the correct explanation of assertion b) If both assertion and reason are true but reason is not the correct explanation of assertion c) If assertion is true but reason is false d) If both assertion and reason are false 120. Kerbs cycle begins with the reaction: a) Citric acid + Acetyl CO-A b) Oxalacetic acid + Pyruvic acid c) Oxalacetic acid + Citric acid d) Oxaloacetate + Acetyl acid 121. During which stage in the complete oxidation of glucose are the greatest nuxber of ATP molecules formed from ADP a) glycolysis b) krebs cycle c) conversion of pynrvic acid to acetyl CoA d) electron transport chain molecules.
- 122. Oxidation of one NADH and one FADH₂ respectively gives rise to and ATP
 - a) 3 and 2 b) 2 and 1 c) 2 and 3 d) 1 and 1
- 123. Rise in the water level from X to Y in the given experimental set-up demonstrates

- a) aerobic respirat b) anaerobic respiration c) photosynthesis d) transpiration pull
- 124. Which one of the following is the first step of gloyclysis?
 - a) Breakdown of glucose b) Phosphorlyation of glucose
 - c) Conversion of glucose into fructose d) Dehydrogenation of glucose
- 125. In which one of the following processes, carbon dioxide is not released?


- a) Aerobic respiration in animals b) Alcoholic fermentation c) Lactate fermentation d) Aerobic respiration in plants 126. Which step is called gateway step/link reaction in aerobic respiration? a) Glycolysis b) Formation of acetyl coenzymeA c) Citric acid formation d) ETS terminal oxidation 127. Select the option that correctly fills the blanks in the following statements. A. Glucose has ____(i)___ carbon atoms, pyruvic acid has ____(ii)___ carbon atoms and the acetyl group has (iii) carbon atoms. B. Electrons enter the electron transport system as parts of hydrogen atoms attached to <u>(i)</u> and <u>(ii)</u> . a) b) (i)-6, (ii)-3, (iii)-2(i)-NADH, (ii)-FADH₂ (i)-6, (ii)-4, (iii)-3(i)-NADH, (ii)-FADH₂ Α В В (i)-6, (ii)-4, (iii)-3(i)-ATP, (ii)-GTP (i)-6, (ii)-3, (iii)-2(i)-ATP, (ii)-GTP 128. Which of the following describes significance of fermentation? (i) Production of alcohol in brewing industry (ii) Making of dough in baking industry (iii) Curing of tea and tobacco
- - (iv) Production of vinegar by acetic acid bacteria
 - a) (i), (ii) and (iii) b) (i), (ii) and (iv) c) (ii), (iii) and (iv) d) (i), (ii), (iii) and (iv)
- 129. In germinating seeds fatty acids are degrade exclusively in the_
 - a) proplastids b) glyoxysomes c) peroxisomes d) mitochondria
- 130. When two molecules of acetyl CoA enter the TCA cycle, net gain at the end of the cycle is

 - a) 2NADH₂ + 2FADH₂+ 1GTP b) 3NADH₂ + 2FADH₂+ 2GTP

 - c) 6NADH₂ + 2FADH₂+ 2GTP d) 3NADH₂ + 1FADH₂+ 4GTP
- 131. Match the following and choose the correct option from those given below.

	Column A		Column B
ΙΔ	Molecular oxygen	i	α- ketoqlutaric acid
R	Electron	ii	H drogen
<u>ا</u>	aceptor	".	acceptor
	Pyvate	iii.	Cytochrome
C.	dehydrogenase		C
D.	Decarboxylation	iν	Acetyl Co A

- a) A-ii, B-iii, C-iv, D-i b) A-iii, B-iv, C-ii, D-i c) A-ii, B-i, C-iii, D-iv d) A-iv, B-iii, C-i, D-ii
- 132. Study the given figure and select the incorrect option regarding this.

a)

The figure represents chemiosmotic ATP synthesis by oxysomes where X is the mitochondrial matrix and Y is the inner mitochondrial membrane

b)

Enzyme required for ATP synthesis is ATP synthase, considered to be the complex-V of ETS.

c)

The figure represents oxidative phosphorylation which is the synthesis of energy rich ATP molecules with the help of energy liberated during oxidation of reduced co-enzymes (NADH, FADH2) produced in respiration.

d)

ATP synthase becomes active only when there is a proton gradient having higher concentration of protons (W) on the inner side (F1 side) as compared to the outer side (Fa side).

- 133. Which one of the following statements in incorrect?
 - a) In competitive inhibition, the inhibitor molecule is not chemically changed by the enzyme

b)

The competitive inhibitor does not affect the rate of breakdown of the enzyme for the substrate.

c)

The presence of the competitive inhibitor decreases the KM of the enzyme of the substrate

d) A competitive inhibitor reacts reversibly with the enzyme to form an enzyme -inhibitor complex.

134. Select the correct combination of the respiratory substrates and their respective RQs.

a)

Organic acids	Fats	Succulents
1.3	0.7	Zero
c)		

D)

Organic acids	Fats	Succulents
Infinity	0.7	Zero
d)		

Organic acids	Fats	Succulents	Organic
Zero	1.3	0.7	Zero

cacids Fats Succulents 0.7 1.3

135. Krebs' cycle occurs in

- a) mitochondria b) cytoplasm c) chloroplast d) ribosomes
- 136. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as:

Assertion: Plants have no specialised respiratory organs.

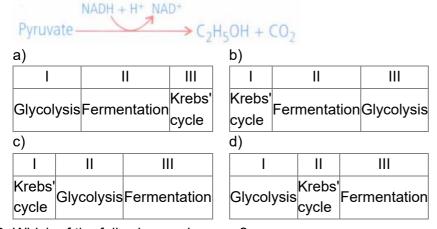
Reason: There is very little transport of gases from one plant part to another

a) If both assertion and reason are true and reason is the correct explanation of assertion

b)

If both assertion and reason are true but reason is not the correct explanation of assertion.

- c) If assertion is true but reason is false. d) If both assertion and reason are false.
- 137. Read the given statements and select the correct option.


Statement 1: During photophosphorylation (of photosynthesis), light energy is utilised for the production of proton gradient during ATP synthesis.

Statement 2: In respiration, energy of oxidation reduction is utilised for the phosphorylation and thus the process is called oxidative phosphorylation.

- a) Both statements 1 and 2 are correct
- b) Statement 1 is correct but statement 2 is incorrect
- c) Statement 1 is incorrect but statement 2 is correct.
- d) Both statements 1 and 2 are incorrect
- 138. In mitochondria, protons accumulate in
 - a) Outer membrane b) Intermembrane space c) Inner membrane d) Matrix
- 139. Which of the metabolites is common to respiration mediated breakdown of fats, carbohydrates and proteins?
 - a) Fructose 1, 6- bisphosphate b) Pyruvic acid c) Aceryl CoA
 - d) Glucose 6 phosphate
- 140. In Krebs'cycle FAD participates as electron acceptor during the conversion of
 - a) succinyl Co-A to succinic acid b) a-ketoglutarate to succinyl Co-A
 - c) succinic acid to fumaric acid d) fumaric acidto malic acid
- 141. All of the following processes can release CO2 except
 - a) alcoholic fermentation b) oxidative decarboxylation and Krebs' cycle
 - c) oxidative phosphorylation d) conversion of a-ketoglutaric acid to succinic acid.
- 142. Categorise the given equations under respective phases and select the correct option.

(i)
$$C_6H_{12}O_6 + 2NAD^+ + 2ADP + 2Pi \rightarrow 2C_3H_4O_3 + 2ATP + 2NADH + 2H^+$$
 (ii)

 $Pyrucvic \quad acid + 4NAD^+ + FAD^+ + 2H_2O + ADP + Pi \rightarrow 3CO_2 + 4NADH + 4H^+ + ATP + FADH_2$ (iii)

- 143. Which of the following are isomers?
 - a) 3PGA and 2PGA b) PGAL and DHAP c) Glucose and Fructose d) All of these
- 144. Phosphorylation of glucose during glycolysis is catalysed by
 - a) phosphoglucomutase b) phosphoglucoisomerase c) hexokinase d) phosphorylase
- 145. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as :

Assertion: Respiration is the breaking of the C - C bonds of complex compounds through oxidation within the cells and release of large amount of energy.

Reason: The compounds that are oxidised during respiration are called respiratory substrates

- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false.

	electrons to O ₂ is a) Cytochrome -b b) Cycto-C c) Cycto-a ₃ d) Cycto-f	
147.	End product of glycolysis is a) acetyl Co-A b) pyruvic acid c) glucose 1-phosphate d) fructose 1-phosphate	
148.	If volume of CO_2 liberated during respiration is more than the volume of O_2 used, then the respiratory substrate will be: a) carbohydrate b) fat c) protein d) organic acid.	
149.	End products of aerobic respiration are a) sugar and oxygen b) water and energy c) carbon dioxide, water and energy d) carbon dioxide and energy	
150. The pathway of respiration common in all living organisms isX it occurs in tY and the products formed are two molecules ofZldentify X, Y and above paragraph and select the correct answer.		
	a) b)	
	X Y Z X Y Z	
	EMP pathwaymitochondrionpyruvic acid EMP pathwaycytoplasmpyruvic acid	
	c) d)	
	X Y Z X Y Z	
	Krebs' cycle cytoplasm acetyl CoA Krebs' cycle mitochondrion acetyl CoA	
151.	As per chemiosmotic coupling hypothesis, in mitochondria, protons accumulate in the a) outer membrane b) inner membrane c) intermembrane space d) matrix	
152.	Which of the following steps during glycolysis is associated with utilisation of ATP? a) Glucose → Glucose - 6- phosphate b) Fructose-6-phosphate → Fructose-1,6-biphosphate c) PEP → Pyruvic acid d) Both (a) and (b)	
153.	The energy-releasing metabolic process in which substrate is oxidised without an external electron acceptor is called a) Glycolysis b) Fermentation c) Aerobic respiration d) Photorespiration	
154.	Which metabolite is common in respiration mediated breakdown of fats, carbohydrates and proteins? a) Acetyl CoA b) Glucose 6-phosphate c) Fructose 1, 6-biphosphate d) Pyruvic acid	
155.	Respiratory quotient may be represented as a) O_2 taken in $/CO_2$ evolved b) CO_2 evolved $/O_2$ taken in c) O_2 taken in d) CO_2 taken in.	
156.	Out of 36 ATP molecules produced per glucose molecule during respiration a) 2 are produced outside glycolysis and 34 during respiratory chain b) 2 are produced outside mitochondria and 34 inside mitochondria c) 2 during glycolysis and 34 during Krebs' cycle d) all are formed inside mitochondria	
157.	Respiratory substrate yielding maximum number of ATP molecule isa) ketogenic amino acids b) glucose c) amylose d) glycogen	
158.	Which of the following biomolecules is common to respiration mediated breakdown? a) Acetyl CoA b) Glucose 6-phosphate c) Fructose 1,6-biphosphate d) Pyruvic acid	
159.	ATP generated by 1 NADH and 1 FADH ₂ are respectively. a) 3,2 b) 2,3 c) 3,5 d) 5,3	

146. In the electron transport chain during terminal oxidation, the cytochrome, which donates

- 160. Mobile electrons carriers of ETS in mitochondrial membrane are
 - a) PQ, PC b) CoQ, Cyt.c c) PQ, Cyt.c d) PC, CoQ
- 161. Study carefully the following statements and select the incorrect ones.
 - (i) When fats are used in respiration, the RQ is more than unity because fats contain more O₂ and require relatively less amount of O₂ for oxidation.
 - (ii) The most important energy carrier is ATP. This energy rich compound is mobile and can pass from one cell to another.
 - (iii) Before pyruvic acid enters Krebs' cycle, one of the two carbon atoms of pyruvic acid is reduced to carbon dioxide in the reaction called reductive carboxylation.
 - (iv) A special electron carrier system located in the mitochondrial membrane is called shuttle system. It transfers electrons from the hydrogens of cytoplasmic NADH to the mitochondrial electron carriers across the mitochondrial membrane.
 - (v) Zymase is a complex mixture of many enzymes which requires several coenzymes for its action. The enzyme complex-zymase catalyses series of reactions taking place during fermentation leading to the production of ethyl alcohol
 - a) (i) and (ii) b) (iii) and (iv) c) (i), (ii) and (iii) d) (iii), (iv) and (v)
- 162. Animal cells are suspended in a culture medium that contains excess glucose. The graph below shows glucose utilisation under different growth conditions. (A), (B), and (C) in the graph indicate.

- A Anaerobic respiration
- B Introduction of O₂ to culture medium
- a) C Aerobic respiration
 - A Aerobic respiration
 - B Supply of organic triphosphate
- c) C Aerobic respiration

- A Aerobic respiration
- B Introduction of CO₂ to culture medium
- b) C Anaerobic respiration
- A Aerobic respiration
- B Introduction of CO to culture medium
- d) C Anaerobic respiration
- 163. Three of the following statements about enzymes are correct and one is wrong. Which one is wrong?

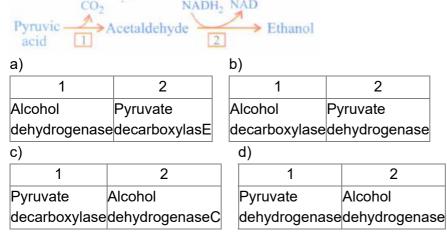
a)

Enzymes are denatured at high temperatures but in certain exceptional organisms, they are effective even at temperatures 80°-90°C

- b) Enzymes are highly specific c) Most enzymes are proteins but some are lipids
- d) Enzymes require optimum pH for maximal activity
- 164. Select the wrong statement with respect to glycolysis.
 - a) It occurs outside mitochondria. b) It is an anaerobic phase.
 - c) Glucose undergoes partial oxidation to form 2 molecules of pyruvic acid.
 - d) Glucose is phosphorylated to glucose-6-phosphate by isomerase enzyme.
- 165. Match column I with column II and select the correct option from the given codes.

Column I	Column II

	A. Glycolysis (i) Inner mitochondrial membrane
	B. TCA cycle (ii) Mitochondrial matrix
	C.ETS (iii) Cytoplasm
	a) A-(iii), B-(i), C-(ii) b) A-(iii), B-(ii), C-(i) c) A-(i), B-(ii), C-(iii) d) A-(ii), B-(i), C-(iii)
166	Number of NADH molecules produced in EMP pathway from one glucose molecule is
100.	a) One b) Two c) Three d) Four
167	For its activity, carboxypeptidase requires formed during an enzymatic reaction is:
107.	a) Nitaccin b) Copper c) zinc d) Iron
160	
100.	The ultimate electron acceptor of respiration in an aerobic organism is: a) cytochrome b) oxygen c) hydrogen d) glucose.
160	
109.	Consider the following statements with respect to respiration. (i) Glycolysis occurs in the cytoplasm of the cell.
	(ii) Aerobic respiration takes place within the mitochondria.
	(iil) Electron transport system is present in the outer mitochondrial membrane.
	(iv) $C_{51}H_{98}O_6$ is the chemical formula of tripalmitin, a fatty acid
	Valume of Q. evalved
	(v) Respiratory Quotient = $\frac{Volume \ of \ CO_2 \ consumed}{Volume \ of \ CO_2 \ consumed}$
	Of the above statements
	a) (i), (ii) and (iv) are correct b) (ii), (iii) and (iv) are correct c) (iii), (iv) and (v) are correct
	d) (ii), (iv) and (v) are correct.
170.	Site of Krebs' cycle in mitochondria is
	a) inner membrane b) outer membrane c) matrix d) oxysomes
171.	Mitochondria are called power houses of the cell. Which of the following observations support
	this statement?
	a) Mitochondria synthesise ATP. b) Mitochondria have a double membrane
	c) The enzymes of the Krebs' cycle and the cytochromes are found in mitochondria.
	d) Mitochondria are found in almost all plant and animal cells.
172.	The first 5C dicarboxylic acid in Krebs' cycle which is used in nitrogen metabolism is
	a) OAA b) citric acid c) α-ketoglutaric acid d) acetyl coenzyme A.
173.	The number of substrate level phosphorylations in one turn of citric acid cycle is
	a) 2 b) 3 c) 0 d) 1
174.	Select the correct statements.
	(i) Between temperature range 0 - 25°C, rate of respiration doubles for every 10° Crise in
	temperature
	(ii) Cytochrornes are iron-porphyrin compounds.
	(iii) Respiratory rate of wounded or injured plant parts generally decreases a) (i) and (ii) b) (ii) and (iii) c) (i) and (iii) d) (i), (ii) and (iii)
175.	Which of the following cellular metabolic processes can occur both in the presence or absence
	of O_2 ?
	a) Glycolysis b) Fermentation c) TCA cycle
	d) Electron transport coupled with chemiosmosis
176.	Apparatus to measure rate of respiration and RQ is
	a) auxanometer b) potometer c) respirometer d) manometer

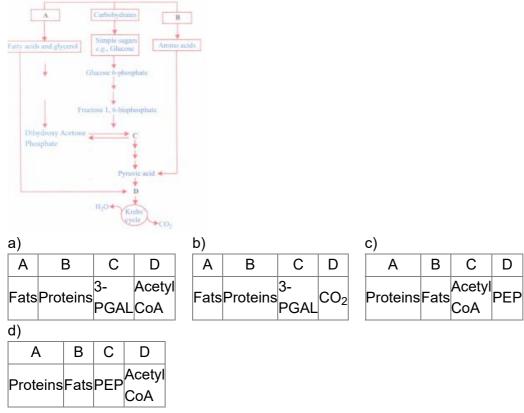

177.	During the process of aerobic respiration,(i) gets oxidised and its electrons get transferred to the electron transport chain while in photosynthesis(ii) gets oxidised to transfer molecules to the electron transport chain. a) (i)-glucose; (ii)-xanthophyll b) (i)-carbon dioxide, (ii) - xanthophyll
	c) (i)-carbon dioxide, (ii)-chlorophyll-a d) (i)-glucose, (ii)-chlorophyll-a
178.	Anaerobic respiration takes place in a) mitochondrion b) nucleus c) cytoplasm d) vacuole
179.	How many ATP molecules released when 1 molecules of glucose in our liver cells? a) 36 b) 38 c) 2 d) 8
180.	Respiratory pathway is a) catabolic b) amphibolic c) anabolic d) endergonic
181.	Seeds respire in a) presence of O_2 b) presence of O_2 c) absence of O_2 d) both (a) and (c)
182.	First step of CO_2 liberation during aerobic respiration is a) PEP \rightarrow Pyruvate b) Pyruvate \rightarrow Acetyl CoA c) Isocitrate \rightarrow Oxalosuccinate d) Succinyl CoA \rightarrow Succinate
183.	Which out of the following statements is incorrect? a)
	The breakdown product of glucose which enters into mitochondrion during aerobic respiration is pyruvic acid generated in the cytosol.
	b) When the electrons pass from one carrier to another via complex I to IV in the electron transport chain, they are coupled to ATP synthase (complex V) for the production of ATP from ADP and Pi.
	c) The ratio of volume of O_2 consumed in respiration to the volume of CO_2 evolved is called as the respiratory quotient (RQ).
	d) Compensation point is the point reached in a plant when the rate of photosynthesis is equal to the rate of respiration
184.	In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as :
	 Assertion: In electron transport system, the electrons are passed on to oxygen resulting in the formation of H₂O. Reason: Oxygen is the ultimate acceptor of electrons. a) If both assertion and reason are true and reason is the correct explanation of assertion.
	b) If both assertion and reason are true but reason is not the correct explanation of assertion
	c) If assertion is true but reason is false. d) If both assertion and reason are false
185.	Life without air would bea) reductional b) free from oxidative damage c) impossible d) anaerobic
186.	During anaerobic digestion of organic waste, such as in producing biogas, which one of the following is left undegraded?
197	a) Cellulose b) Lipids c) Lignin d) Hemi-cellulose Which of the following exhibits the highest rate of respiration?
101.	Willow of the following exhibite the highest rate of respiration:

	a) Growing shoot apex b) Germinating seed c) Root tip d) Leaf bud
188.	Oxidative phosphorylation involves simultaneous oxidation and phosphorylation to finally form .
400	a) pyruvate b) NADP c) DPN d) ATP
189.	At a temperature above 35°C a) rate of photosynthesis will decline earlier than that of respiration b) rate of respiration will decline earlier than that of photosynthesis c) there is no fixed pattern d) both decline simultaneously
190.	The end product of glycolysis is a) pyruvic acid b) glucose c) ethyl alcohol d) CO ₂
191.	All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membranes in eukaryotes and in cytosol in prokaryotes. This enzyme is a) isocitrate dehydrogenase b) ketoglutarate dehydrogenase
	c) succinate dehydrogenase d) lactate dehydrogenase
192.	In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as: Assertion: ATP acts as the energy currency of the cell. Reason: ATP can be broken down to release energy wherever and whenever energy needs to
	be utilised.
	a) If both assertion and reason are true and reason is the correct explanation of assertion
	b) If both assertion and reason are true but reason is not the correct explanation of assertion
	c) If assertion is true but reason is false d) If both assertion and reason are false.
193.	Oxidative phosphorylation is production of a) ATP in photosynthesis b) NADPH in photosynthesis c) ATP in respiration d) NADH in respiration
194.	Terminal cytochrome of respiratory chain which donates electrons to oxygen is a) cyt - b b) cyt -c c) cyt - a ₁ d) cyt - a ₃
195.	FAD participates in Krebs' cycle as electron acceptor during conversion of a) succinyl CoA to succinic acid b) α -ketoglutarate to succinyl CoA
	c) succinic acid to fumaric acid d) fumaric acid to malic acid.
196.	The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of
	 a) 1 molecule of 6-C compound b) 1 molecule of 4-C compound and I molecule of 2-C compound c) 2 molecules of 3-C compound d) 1 molecule of 3-C compound
197.	During oxidation of one mole of glucose, 36 ATP can be obtained by which of the following distribution?
	a) Glycolsis-2, Citric acid cycl-6, ETS-28 b) Glycolysis-2, Citric acid cycle-2, ETS-32
	c) Glycolysis-4, Citic acid cycle-2, ETS-30 d) Glycolysis-2, Citic acid cycle-4, ETS-30
198.	Translation state structure of the substrate formed during an enzymatic reaction is: a) Permanent and stable b) translate but stable c) Permenant but unstable
	d) translate and unstable
199.	Substrate level phosphorylation occurs during which step of Krebs' cycle?

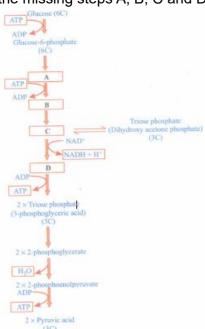
	, •	\rightarrow Succinic acid b) Isocitric accid \rightarrow α -ketoglutaric acid d)	
200.	Which of the mo	,	fermentation of glucose by yeast?
201.	a) Succinate →b) Fumarate →c) Succinate →	ct sequence of formation of given Malate → Fumarate → OAA Succinate → Malate → OAA Fumarate → Malate → OAA umarate → Succinate → OAA	intermediates of Krebs' cycle.
	a) acetyl CoA	e product between a-ketoglutaric b) succinyl CoA c) fumarate d st reaction of TCA cycle.	acid and succinic acid in TCA cycle is) oxalosuccinic acid
	Acetyl CoA + O.	Citrate $AA + H_2O \longrightarrow \textcircled{A} + CoA$ Synthesis	
	a) First product	out compound A? of TCA cycle b) Tricarboxylic ac	id and six carbon compound enzyme aconitase to form cis-aconitate
204.	a) Pyruvic acid i b) Pyruvic acid i	rgy of the carbohydrates is release s converted into CO_2 and H_2O s converted into CO_2 and H_2O onverted into alcohol and CO_2	ed by oxidation when c) Sugar is converted into pyruvic acid
205.		the first stage of glucose breakdown b) glycolysis c) oxidative phosp	
206.	liberate energy.	strates are the organic substance reduced c) synthesised d) bot	s which are during respiration to the characteristic (a) and (b)
207.	along mitoch	ort chain (ETC) is a set of elect ondrial membrane. b) six, inner c) seven, outer	ron carriers present in a specific sequence
208.	the correct choice Assertion: The and water. Reason: This re	ce as: first step in TCA cycle is the conce	is followed by a statement of reason. Mark lensation of pyruvate with oxaloacetic acid ruvate synthase on is the correct explanation of assertion
	•		n is not the correct explanation of assertion
	,	true but reason is false. d) If bo	th assertion and reason are false
209.	RQ is a) C/N b) N/C	c) CO ₂ /O ₂ d) O ₂ /CO ₂	
210.		T	ect option from the codes given below.
	Column I	Column II	
	A. RQ	(i) Chemiosmotic ATP synthesis	
	B. Mitchel	(ii) Muscle fatigue	

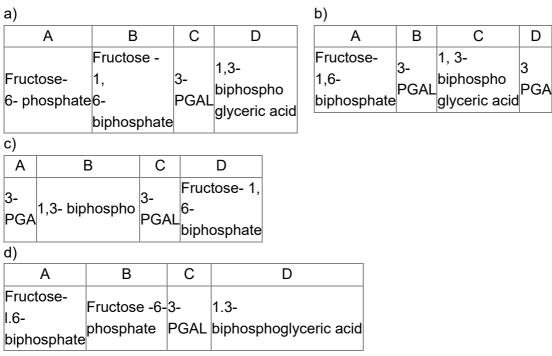
Column I	Column II
C. Cytochromes	(iii) Inner mitochondrial membrane
D. Lactic acid	(iv) Alcoholic fermentation
E. Yeast	(v) Respirometer

- a) A-(v), B-(i), C-(iii), D-(ii), E-(iv) b) A-(v), B-(i), C-(iii), D-(iv), E-(ii)
- c) A-(i), B-(v), C-(ii), D-(iii), E-(iv) d) A-(v), B-(ii), C-(iv), D-(iii), E-(i)
- 211. RQ of proteins, carbohydrates, fats and organic acids are in order
 - a) <1,1,<1,>1 b) >1,<1,1,1 c) 1,1,0,-1 d) 0,<1,1,>1.
- 212. Identify the enzymes 1 and 2 in the given reaction and select the correct option.


- 213. Fate of pyruvic acid during aerobic respiration is:
- 214. Which of the following statements regarding mitochondrial membrane is NOT correct?
 - a) The inner membrane is highly convoluted forming a series of infoldings
 - b) The outer membrane resembles a sleve
 - c) The outer membrane is permeable to all kinds
 - d) The enzymes of the electron transfer chain are embedded in the outer membrane
- 215. The end product of oxidative phosphorylation is:
 - a) NADH b) Oxygen c) ADP d) ATP + H₂O.
- 216. Site of EMP pathway in eukaryotes is
 - a) Inner mitochondrial membrane b) Cytoplasm c) Mitochondrial matrix
 - d) Both (2) & (3)
- 217. In the following questions, a statement of assertion is followed by a statement of reason. Mark the correct choice as:

Assertion: Respiratory pathway is an amphibolic pathway.


Reason: In respiration, there is breakdown of many substances (catabolism) and synthesis of many substances (anabolism) by respiratory intermediates


- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false. d) If both assertion and reason are false

218. Refer to the given figure and select the correct option for A, B, C and D.

- 219. Out of 38 ATP molecules produced per glucose, 32 ATP molecules are formed from NADH/FADH₂ in
 - a) respiratory chain b) Krebs'cycle c) oxidative decarboxylation d) EMP
- 220. The flow chart given below shows the steps in glycolysis. Select the option that correctly fills in the missing steps A, B, C and D

- 221. Maximum amount of energy/ATP is liberated on oxidation of _____
 - a) fats b) Proteins c) starch d) vitamins
- 222. Ethyl alcohol fermentation occurs in
 - a) Lactobacillus b) muscles of humans c) Rhizopus d) all of these
- 223. In the following question, a statement of assertion is followed by a statement of reason. Mark the correct choice as :

Assertion: When carbohydrates are used as substrate and are completely oxidised, the RQ is equal to 1.

Reason: When proteins are used in respiration, the RQ is greater than 1.

- a) If both assertion and reason are true and reason is the correct explanation of assertion
- b) If both assertion and reason are true but reason is not the correct explanation of assertion
- c) If assertion is true but reason is false d) If both assertion and reason are false