SOME BASIC CONCEPT OF CHEMISTRY FORMULAS

1. SOME BASIC CONCEPTS OF CHEMISTRY

$$1\text{\AA} = 10^{-10} \text{ m}, 1 \text{ nm} = 10^{-9} \text{ m}$$
 $1 \text{pm} = 10^{-12} \text{ m}$
 $1 \text{ litre} = 10^{-3} \text{ m}^3 = 1 \text{dm}^3$
 $1 \text{ atm} = 760 \text{ mm or torr}$
 $= 101325 \text{ Pa or Nm}^{-2}$
 $1 \text{ bar} = 10^5 \text{Nm}^{-2} = 10^5 \text{ Pa}$
 $1 \text{ calorie} = 4.184 \text{ J}$
 $1 \text{ electron volt (eV)} = 1.6022 \times 10^{-19} \text{ J}$
 $(1\text{ J} = 10^7 \text{ergs})$
 $(1\text{ cal} > 1\text{ J} > 1\text{ erg} > 1\text{ eV})$

Substance: (Matter)

JOIN MY PAID WHATSAPP TEST GROUP

NEET / JEE

EACH SEPARATE GROUP

FEES FOR 1 YEAR - ₹ 4000 FEES FOR 1 MONTH -₹500

MONTHLY MINIMUM 20 PAPERS & NOTES UPLOAD

RAVI TEST PAPERS & NOTES WHATSAPP - 8056206308

Substance				
Physical Classification	Chemical classification			
- Solid - Liquid - Gas	Pure substance		Impure substance	
	Element	compound	Mixture	
	- Metal - Non mental - metlliod		Homogenous	Heterogenous
			Solutions	Colloidsuspension

DEFINITION OF MOLE

One mole is a collection of that many entities as there are number of atoms exactly in 12 gm of C-12 isotope.

- (1). Number of molecules in W(g) of substance = $\frac{W(g) \times N_A}{GMM}$
- (2). Molarity (M): Moles of solute in one lit solution $=\frac{\text{moles of solute}}{\text{vol. of solution in lit}} = \frac{\text{w} \times 1000}{\text{M}^0 \times \text{V(ml)}}$ (where M° is molar mass of solute) Molarity × volume of solution in lit = moles of solute

(3) Molality (m) = Moles of solute per kg of solvent $= \frac{\text{Moles of solute}}{\text{Weight of solvent (kg)}} = \frac{\text{w} \times 1000}{\text{M}^{0} \times \text{w}'}$

Molality (m) = $\frac{\text{No. of moles of solute}}{\text{Mass of solvent in kg}}$

- (4). Number of molecules in V litre of gas at S.T.P. = $\frac{VN_A}{22.4}$
- (5). Number of gram atoms = $\frac{W(g)}{GAM}$ (GAM \rightarrow gram atomic mass)

THIS TEST ANSWERS YOU CAN VIEW ONLY IN MY

- (6). Number of gram molecules = $\frac{W(g)}{Gram \text{ molecular mass}}$
- (7). Dilution formula: $M_1V_1 = M_2V_2$

For mixing two solutions of the same substance

$$M_1V_1 + M_2V_2 = M_3(V_1 + V_2)$$

Molarity can be directly calculated from % by mass (w/w) if density is known

Molarity =
$$\frac{\% \times 10 \times d}{GMM}$$

- (8). Mass of 1 atom of element = $\frac{GAM}{N_A}$
- (9). Mass of 1 molecule of substance = $\frac{MM}{N_A}$ (MM \rightarrow Molar mass)
- (10). $T(K) = T(^{\circ}C) + 273.15$
- (11). Relative atomic mass = $\frac{\text{Mass of an atom of the element}}{\frac{1}{12} \times \text{Mass of an atom of carbon (C-12)}}$
- (12). Number of molecules in n moles of substance = $n \times N_A$
- (13). Mass % of an element in a compound = $\frac{\text{Mass of that element in 1 mole of the compound}}{\text{Moler mass of the compount}} \times 100$
- (14). Mass percent = $\frac{\text{Mass of solute}}{\text{Mass of solution}} \times 100$
- (15). $\frac{x_B}{1-x_B} = \frac{\text{molality} \times M_A}{1000}$ where M_A mass of solvent
- (16). Normality (N): No. of equivalent of solute per litre of solution.

$$= \frac{\text{g.eq.of solute}}{\text{vol.of solution in lit}} = \frac{w \times 1000}{E \times V(ml)}$$

- ⇒ [Normality × volume in lit = g.eq. of solute]
- \Rightarrow [Normality = Molarity \times n factor]
- (17) Molarity (M) = $\frac{\text{No. of moles of solute}}{\text{Volume of solution in litres}}$ mole /L
- (18). Avogadro's No. $N_A = 6.022 \times 10^{23}$
- (19). $T(°F) = \frac{9}{5}T(°C) + 32$

For Ionic Compounds

1 g formula unit = 1 mole of formula unit = NA formula unit.

g formula mass (GFM) = mass of NA formula unit in g.

Mole of formula unit = $\frac{Mass(g)}{GMM \text{ or molar mass}}$

> VAPOUR DENSITY

Ratio of density of vapour to the density of hydrogen at similar pressure and temperature

Vapour density =
$$\frac{\text{molar mass}}{2}$$

Molecular mass = $2 \times$ vapour density

Mole fraction of A =
$$\frac{\text{No. of moles of A}}{\text{No. of moles of solution}}$$

THIS TEST ANSWERS YOU CAN VIEW ONLY IN MY