JEE NEET PHYSICS QA

A 10 μC charge is divided into two parts and placed at 1 cm distance so that the repulsive force between them is maximum. The charges of the two parts are:

- (a) $9 \mu C$, $1 \mu C$
- (b) 5 μC, 5 μC
- (c) $7 \mu C$, $3 \mu C$ (d) $8 \mu C$, $2 \mu C$

Ans. (b): Let one part of the charge be q and other part of the charge is (10 - q) separated at distance 1cm. From coulombs law-

Electrostatic force between them-

$$F = \frac{kq(10 - q)}{r^2}$$

For maximum force, $\frac{dF}{da} = 0$

$$\frac{\mathrm{dF}}{\mathrm{dq}} = 0$$

$$\frac{\mathbf{k}\left(10-2\mathbf{q}\right)}{\left(1\right)^{2}}=0$$

$$10 - 2q = 0$$

$$q = \frac{10}{2}$$

$$q = 5 \mu C$$

$$q = 5 \mu C$$

So, other charge = $10 - q$
= $10 - 5$
= $5\mu C$

JOIN MY PAID WHATSAPP TEST GROUP

> **NEET / JEE EACH SEPARATE GROUP**

FEES FOR 1 YEAR - ₹ 4000 FEES FOR 1 MONTH -₹500

MONTHLY MINIMUM 20 PAPERS & NOTES UPLOAD

RAVI TEST PAPERS & NOTES WHATSAPP - 8056206308

Hence, force between them is maximum if the two parts have equal charge of 5µC.

Two particles of charges + e and + 2e are at 16 cm away from each other. Where should another charge q be placed between them, so that the system remains in equilibrium?

- (a) 24 cm from + e (b) 12.23 cm from + e
- (c) 80 cm from + e (d) 6.63 cm from + e

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

Ans. (d):

$$e$$
 q $2e$
 $\leftarrow r \longrightarrow \leftarrow 16 - r \longrightarrow$
 $\leftarrow 16 \longrightarrow \rightarrow$

For the condition of equilibrium –

Force on q due to e = force on q due to 2e

$$\frac{1}{4\pi\epsilon_{\circ}} \cdot \frac{eq}{r^2} = \frac{1}{4\pi\epsilon_{\circ}} \frac{2e \cdot q}{\left(16 - r\right)^2}$$

$$\frac{1}{r^2} = \frac{2}{(16-r)^2}$$

$$16 - r = \sqrt{2} r$$

$$r = \frac{16}{1 + \sqrt{2}} = 6.63 \, \text{cm}$$

$$r = 6.63$$
 cm from $+e$

The distance between charges 5×10⁻¹¹ C and -2.7×10⁻¹¹ C is 0.2 m. The distance at which is third charge should be placed in order that it will not experience any force along the line joining the two charges is

(b) 0.65 m

(c) 0.556 m (d) 0.350 m
Ans. (c): Given,
$$Q_1 = 5 \times 10^{-11}$$
C, $Q_2 = -2.7 \times 10^{-11}$ C

$$Q_1 \qquad 0.2m \qquad Q_2 \qquad A$$

$$5 \times 10^{-11}$$
C
$$Q_2 \qquad Q_3 \qquad A$$

Let distance of A is x m from Q2 having charge q Force acting on point A due to Q1

$$F_1 = k \frac{qQ_1}{(0.2 + x)^2}$$
 ...(i)

Force acting on point A due to Q2

$$F_2 = k \frac{qQ_2}{x^2}$$
(ii)

$$F_1 = F_2$$

$$k \frac{qQ_1}{(0.2 + x)^2} = \frac{kqQ_2}{x^2}$$

$$\frac{Q_1}{(0.2 + x)^2} = \frac{Q_2}{x^2}$$

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

$$\frac{5 \times 10^{-11}}{\left(0.2 + x\right)^2} = \frac{2.7 \times 10^{-11}}{x^2}$$

$$\frac{50}{27} = \frac{\left(0.2 + x\right)^2}{x^2}$$

$$\frac{0.2 + x}{x} = 1.36$$

$$0.2 = 0.36x$$

$$x = 0.556 \text{ m}$$

Ans. (a): We know,

The specific charge of an electron is

(a)
$$1.76 \times 10^{11} \text{ C kg}^{-1}$$
 (b) $1.6 \times 10^{-19} \text{ C kg}^{-1}$ (c) $9.1 \times 10^{-31} \text{ C kg}^{-1}$ (d) $1.76 \times 10^{11} \text{ C kg}^{-1}$

(b)
$$1.6 \times 10^{-19} \text{ C kg}^{-1}$$

(c)
$$9.1 \times 10^{-31} \text{ C kg}^-$$

(d)
$$1.76 \times 10^{11} \,\mathrm{C \, kg^{-1}}$$

Specific charge of an electron = $\frac{\text{Charge}}{}$

So,
$$\frac{e}{m_e} = \frac{1.6 \times 10^{-19} \text{ C}}{9.1 \times 10^{-31} \text{kg}}$$

$$\frac{e}{m_e} = 1.76 \times 10^{11} \text{C/kg}$$

A circular coil of radius 10 cm and 50 turns is rotated about its vertical diameter with an angular speed of 20 rad/s in a uniform horizontal magnetic field of magnitude 7×10⁻² T. If the closed loop of resistance of the coil is 20Ω . The maximum value of current in the coil is

Ans. (d): Given,

$$r = 10 \text{ cm} = 10 \times 10^{-2} \text{ m}$$

$$N = 50 \text{ turns}$$

$$\omega = 20 \text{ rad /sec}$$

$$\mathbf{B} = 7 \times 10^{-2} \,\mathrm{T}$$

$$R = 20\Omega$$

Maximum induced emf

$$\varepsilon = NBA\omega$$

$$\epsilon = 50 \times 7 \times 10^{-2} \left[\pi \times (10 \times 10^{-2})^2 \right] \times 20$$

$$\epsilon = 70 \ (\pi \times 10^{-2})$$

∴ Maximum induced current (I) =
$$\frac{\epsilon}{R} = \frac{70\pi \times 10^{-2}}{20}$$

$$I = 0.11 A$$

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

A big circular coil of 1000 turns and average radius 10 m is rotating about its horizontal diameter at 2 rad s⁻¹. If the vertical component of earth's magnetic field at that place is 2×10^{-5} T and electrical resistance of the coil is $12.56~\Omega$, then the maximum induced current in the coil will be

(a) 1 A

- (b) 2 A
- (c) 0.25 A
- (d) 1.5 A

Ans. (a): Given,

Number of turns (N) = 1000

Radius of coil (r) = 10m

Earth's magnetic field (B) = 2×10^{-5} T

Induced emf is given as

 $\varepsilon_{\text{max}} = \text{NBA}\omega$

Maximum induced current is

$$I_{max} = \frac{E_{max}}{R} = \frac{NBA\omega}{R}$$

$$1000 \times 2 \times 10^{-5} \times \pi \times 10^{-5}$$

$$I_{max} = \frac{1000 \times 2 \times 10^{-5} \times \pi \times (10^{2}) \times 2}{12.56}$$

$$I_{\text{max}} = 1A$$

A square loop of side 1 m and resistance 1 Ω is placed in a magnetic field of 0.5T. If the plane of loop is perpendicular to the direction of magnetic field, the magnetic flux through the loop is

- (a) 1 weber
- (b) Zero weber
- (c) 2 weber
- (d) 0.5 weber

Ans. (d): Given,

Magnetic field (B) = 0.5 T

Length $(L) = 1m^2$

Angle between \overline{B} and \overline{A} is zero

 $\phi = B.A.\cos\phi$

$$\phi = \mathbf{B} \times (\mathbf{L})^2 \times \cos 0^{\circ}$$

$$= 0.5 \times (1)^2 \times 1$$

= 0.5Weber

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

The charge flowing in a conductor changes with time as $Q(t) = \alpha t - \beta t^2 + \gamma t^3$. Where α , β and γ are constants. Minimum value of current is:

(a)
$$\alpha - \frac{\gamma^2}{3\beta}$$

(b)
$$\beta - \frac{\alpha^2}{3\gamma}$$

(c)
$$\alpha - \frac{\beta^2}{3\gamma}$$

(d)
$$\alpha - \frac{3\beta^2}{\gamma}$$

Ans. (c): We know that,

$$\begin{split} i &= \frac{Q}{t} \\ i &= \frac{dQ}{dt} = \alpha - 2\beta t + 3\gamma t^2 \end{split}$$

Now, $di/dt = -2\beta + 6\gamma t$ di/dt = 0

$$-2\beta + 6\gamma t = 0$$

$$-2\beta = -6\gamma t \Rightarrow t = \frac{2\beta}{6\gamma} = \frac{\beta}{3\gamma}$$

$$t = \beta/3\gamma$$

And, $d^2i/dt^2 = 6\gamma$

$$\therefore \qquad i_{min} = \alpha - 2\beta \left(\frac{\beta}{3\gamma}\right) + 3\gamma \left(\frac{\beta}{3\gamma}\right)^2 = \alpha - \frac{2\beta^2}{3\gamma} + \frac{\beta^2}{3\gamma}$$

$$i_{min} = \alpha - \frac{\beta^2}{3\gamma}$$

A current of 0.6 A is drawn by an electric bulb for 10 minutes. Which one of the following is the amount of electric charge that flows through the circuit?

UPSC NDA-04.09.2022

Ans. (c): Given, I = 0.6 A, t = 10 minutes = 600 sWe know that,

Charge,
$$Q = I.t$$

$$Q = 0.6 \times 10 \times 60$$

$$Q = 360 \text{ C}$$