SEARCH GOOGLE FOR FREE MATERIALS

FOR ANSWERS

www.ravitestpapers.in

FOR PDF FILES

www.ravitestpapers.com

Instructions

1. JOIN MY PAID WHATSAPP GROUP & GET PDF FORMAT PAPERS WITH ANSWERS FOR ALL MY UNLIMITED DPP UPDATES. ONE TIME FEES RS.3500 TILL 2026 EXAM RAVI TEST PAPERS & NOTES WHATSAPP – 8056206308

Q1. Which of the following statements is true for the function $f(x)=\begin{cases}x+3,&x\neq0\\1&,&x=0\end{cases}$?

1 Mark

A f(x) is continuous and differentiable $\forall~\mathbf{x}~\in\mathbb{R}$

B f(x) is continuous $\forall~\mathbf{x}~\in\mathbb{R}$

C $f(\mathsf{x})$ is continuous and differentiable $orall \ \mathbf{x} \ \in \mathbb{R} - (0)$

D f(x) is discontinuous at infinitely many points

Q2. The value of k for which $f(x)=\begin{cases}3x+5,&x\geq 2\\kx^2,&x<2\end{cases}$ is a continuous function, is:

A $-\frac{11}{4}$

B $\frac{4}{11}$

C 11

 $D = \frac{11}{4}$

Q3. The number of points of discontinuity of f defined by f(x)|x|-|x-1| is ______.

Q4. The function f(x) = |x| - x is:

A Continuous but not differentiable at x = 0.

B Continuous and differentiable at x = 0.

C Neither continuous nor differentiable at x = 0.

D Differentiable but not continuous at x = 0.

Q5. For what value of k may the function $\begin{cases} k(3x^2-5x), & x\leq 0\\ \cos x, & x>0 \end{cases}$ become continuous?

A 0

B 1

 $C - \frac{1}{2}$

D No value

Q6. The value of k so that f defined by $f(x)=\begin{cases} x^2\sin\left(\frac{1}{x}\right) & \text{if} \quad x\neq 0\\ k & \text{if} \quad x=0 \end{cases}$ is continuous at x = 0 is

 $\mathbf{A} \ 0$

 $\frac{1}{2}$

C 1

D 2

Q7. The greatest integer function defined by f(x) = [x], 0 < x < 2 is not differentiable at x =_____.

Q8. The value of λ so that the function f defined by $f(x) = \begin{cases} \lambda x, & \text{if} \quad x \leq \pi \\ \cos x & \text{if} \quad x > \pi \end{cases}$ is continuous at $x = \pi$ is ______.

Q9. The function $f(x) = \frac{x-1}{x(x^2-1)}$ is discontinuous at

A Exactly one point.

B Exactly two points.

C Exactly three points.

D No point.

Q10. The function f: R \rightarrow R given by f(x) = -|x-1| is:

A Continuous as well as differentiable at x = 1.

B Not continuous but differentiable at x = 1.

C Continuous but not differentiable at x = 1.

D Neither continuous nor differentiable at x = 1.

Q11. Let f(x) = |x| and $g(x) = |x^3|$, then:

A f(x) and g(x) both are continuous at x = 0

B f(x) and g(x) both are differentiable at x = 0

C f(x) is differentiable but g(x) is not differentiable at x = 0

D f(x) and g(x) both are not differentiable at x = 0

1 Mark

1 Mark

A $\frac{13}{3}$

B 1

C (

D -:

Q13. $f(x) = \begin{cases} \frac{\sqrt{1+px}-\sqrt{1-px}}{x}, & \text{if } 0 \leq x < 0 \\ \frac{2x+1}{x-2}, & \text{if } 0 \leq x \leq 1 \end{cases}$ is continuous in the interval [-1, 1], then p is equal to:

1 Mark

 $\mathbf{A} - 1$

B $-\frac{1}{2}$

 $c_{\frac{1}{2}}$

D 1

Q14.

A Is discontinuous at finitely many points.

B Is continuous everywher.

 $\textbf{C} \,$ Is discontinuous only at $x=\pm\frac{1}{n}, n \, \in \, z-\{0\}$ and x = 0 $\,$ $\,$ $\,$ $\,$ D $\,$ None of these.

Q15. Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion:
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x = 0 \\ 0, & x = 0 \end{cases}$$
 is continuous at x = 0

Assertion: $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x = 0 \\ 0, & x = 0 \end{cases}$ is continuous at x = 0. Reason: Both $h(x) = x^2, g(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x = 0 \\ 0, & x = 0 \end{cases}$ are continuous at x = 0.

A Both A and R are true and R is the correct explanation of

B Both A and R are true and R is not the correct explanation

C A is true but R is false.

D R is true but A is false.

If $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$, then f(x) is: Q16.

A Continuous on [-1, 1] and differentiable on (-1, 1)

B Continuous on [-1, 1] and differentiable on $(-1,0)\cup(0,1)$

C Continuous and differentiable on [-1, 1]

D None of these.

The function $f(x){=}\left\{ \begin{array}{ll} \frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, & x\neq 0 \\ 0, & x=0 \end{array} \right.$ Q17.

A Is continuous at x = 0

B Is not continuous at x = 0

 \mathbf{C} Is not continuous at x = 0, but can be made continuous at x = 0

D None of these.

Q18. Choose the correct answers from the given four options:

If
$$f(x)=egin{cases} \max+1, & \text{if } x\leq \frac{\pi}{2} \\ \sin x+n, & \text{if } x>\frac{\pi}{2} \end{cases}$$
 , is continuous at $x=\frac{\pi}{2},$ then:

A m = 1, n = 0

B $m = \frac{n\pi}{2} + 1$ **D** $m = n = \frac{\pi}{2}$

C $n = \frac{m\pi}{2}$

Q19. Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion(A): $f(x) = \sin x$ is continuous x = 0.

Reason(R): $\sin x$ is differentiable at x = 0.

A Both A and R are true and R is the correct explanation of A B Both A and R are true but R is NOT the correct explanation

C A is true but R is false.

D A is false but R is true.

If $f(x)=\begin{cases} \frac{1}{1+e^{\frac{1}{x}}}, & x\neq 0\\ 0, & x=0 \end{cases}$ then f(x) is: Q20.

A Continuous as well as differentiable at x = 0

B Continuous but not differentiable at x = 0

C Differentiable but not continuous at x = 0

D None of these.

The function $f(x)=\begin{cases} \frac{\sin 3x}{x}, & x\neq 0 \\ \frac{k}{2}, & x=0 \end{cases}$ is continuous at x = 0, then k = Q21.

1 Mark

C 9

D 12

If $f(x)=\left\{egin{array}{ll} \frac{|x+2|}{ an^{-1}(x+2)}, & x
eq -2 \\ 2, & x=-2 \end{array}
ight.$, then f(x) is: Q22.

1 Mark

A Continuous at x = -2

B Not continuous at x = -2

C Diffrentiable at x = -2

D Continuous but nit derivable at x = -2

If $f(x)=\left\{egin{array}{l} rac{1-\sin x}{(\pi-2x^2)} imesrac{\log\sin x}{\log(1+\pi^2-4\pi x+4x^2)}, & x
eq rac{\pi}{2} \\ k. & x=rac{\pi}{2} \end{array}
ight.$ is continuous at $x=rac{\pi}{2}$, then k = Q23.

Q24. Choose the correct answers from the given four options:

The function $f(x) = \cot x$ is discontinuous on the set

A
$$\{ \mathbf{x} = \mathbf{n} \pi : \mathbf{n} \in \mathbf{Z} \}$$

$$\textbf{B}\ \big\{x=2n\pi:n\in Z\big\}$$

$$\mathsf{c} \left\{ \mathrm{x} = (2\mathrm{n} + 1) rac{\pi}{2}; \mathrm{n} \in \mathrm{Z}
ight\}$$

D
$$\left\{ \mathbf{x} = rac{\mathbf{n}\pi}{2}; \mathbf{n} \in \mathbf{Z}
ight\}$$

If $f(x)=\left\{egin{array}{ll} rac{1-\cos x}{x\sin x}, & x
eq 0 \\ rac{1}{2} & x=0 \end{array}
ight.$ then at x = 0, f(x) is: Q25.

1 Mark

1 Mark

A Continuous and differentiable.

B Differentiable but not continuous.

C Continuous but not differentiable.

- D Neither continuous not differentiale.
- The value of f(0), so that the function $f(x)=\frac{2-(256-7x)^{\frac{1}{8}}}{(5x+32)^{\frac{1}{8}}-2},\ x\neq 0$ is continuous everywhere, is given by: Q26.

1 Mark

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

IOIN MY PAID TEST GROUP WITH ANSWERS

A -1

- D None of these
- The value of b for which the function $f(x) = \begin{cases} 5x-4, & 0 < x \leq 1 \\ 4x^2+3bx, & 1 < x < 2 \end{cases}$ is continuous at every point of its domain, is: Q27.

- Q28. If $f(x) = |\log_e |x||$, then:
 - A f(x) is continuous and differentiable for all x in its domain. B f(x) is continuous for all for all x in its domain but not
 - differentiable at $x=\pm 1$
 - ${f C}$ f(x) is neither continuous nor differentiable at $x=\pm 1$
- **D** None of these.
- Q29. If $f(x) = \begin{cases} \frac{1-\cos 10x}{x^2}, & x < 0 \\ a, & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0 \end{cases}$ then the value of so that f(x) may be continuous at x = 0 is:
 - A 25

C -25

D None of these

Q30. Choose the correct answers from the given four options:

If f(x) = 2x and $g(x)=rac{x^2}{2}+1,$ then which of the following can be a discontinuous function:

A f(x) + g(x)

 $\begin{array}{ll} \textbf{B} \ f(x) - g(x) \\ \textbf{D} \ \frac{g(x)}{f(x)} \end{array}$

 $\mathbf{c} f(\mathbf{x}) \cdot g(\mathbf{x})$

- Q31. Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion(A): $f(x) = \tan^2 x$ is continuous at $x = \frac{\pi}{2}$

Reason(R): x^2 is continuous at $x = \frac{\pi}{2}$

- A Both A and R are true and R is the correct explanation of A B Both A and R are true but R is NOT the correct explanation
 - of A

C A is true but R is false.

- **D** A is false but R is true.
- Q32. The function $f(x) = \tan x$ is discontinuous on the set:

1 Mark

A $\{n\pi:n\in z\}$

B $\{2n\pi:n\in z\}$

 $c \{(2n+1)\frac{\pi}{2} : n \in z\}$

- $\mathsf{D}\left\{rac{\mathrm{n}\pi}{2}:\mathrm{n}\in\mathrm{z}
 ight\}$
- Q33. If f(x) = |3 - x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f(x) is:

1 Mark

- A Continuous and differentiable at x = 3
- **B** Continuous but not differentiable at x = 3
- C Differentiable nut not continuous at x = 3
- **D** Neither differentiable nor continuous at x = 3
- Q34. Choose the correct answers from the given four options:
 - If $f(x) = x^2 \sin \frac{1}{x}$, where $x \neq 0$, then the value of the function f at x = 0, so that the function is continuous at x = 0, is:
 - **A** 0

- D None of these
- Q35. The function f(x) = x - [x], where $[\cdot]$ denotes the greatest integer function is:

C Continuous at non-integer points only.

D Differentiable everywhere.

Q36. If
$$f(x) = |\log_{10} x| fx = \log_{10} x$$
, then at x = 1:

1 Mark

A f(x) is continuous and $f'(1^+) = \log_{10} e$

B f(x) is continuous and $f'(1^+) = \log_{10} e$

C f(x) is continuous and $f'(1^-) = -\log_{10} e$

D f(x) is continuous and $f'(1^-) = -\log_{10} e$

1 Mark

1 Mark

A
$$a = \frac{1}{3}$$
, $b = 2$
C $a = \frac{2}{3}$, $b = \frac{8}{3}$

B $a = \frac{1}{3}, b = \frac{8}{3}$

C
$$a = \frac{2}{3}, b = \frac{8}{3}$$

Q38. Let
$$f(x) = (x + |x|) |x|$$
. Then, for all x:

A f is continuous.

B f is differentiable for some x

C f' is continuous.

D f" is continuous.

Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements Q39. carefully and choose the correct alternative from the following:

Assertion(A): Acontinuous funection is always differentiable.

Reason(R): Adifferentiable function is always continuous.

A Both A and R are true and R is the correct explanation of A B Both A and R are true but R is NOT the correct explanation

C A is true but R is false.

D A is false but R is true.

Q40. If
$$f(x) = x \sin \frac{1}{x}$$
, $x \neq 0$, then the value of the function at x = 0, so that the function is continuous at x = 0, is:

C 1

D Indeterminate

Q41. The function
$$f(x) = 1 + |\cos x|$$
 is:

A Continuous no where.

B Continuous everywhere.

C Not differentiable at x = 0

D Not differentiable at $x=n\pi, n\in Z$.

Q42. If f(x) defind by
$$f(x)=\begin{cases} \frac{|x^2-x|}{x^2-x}, & x\neq 0,1\\ 1, & x=0\\ -1, & x=1 \end{cases}$$
 then f(x) is continuse for all:

A x

B x except at x = 0

 \mathbf{C} x except at x = 1

D x except at x = 0 and x = 1

Choose the correct answers from the given four options: Q43.

The function $f(x) = e^{|x|}$ is:

A Continuous everywhere but not differentiable at x = 0.

B Continuous and differentiable everywhere.

C Not continuous at x = 0.

D None of these.

Q44. The function
$$f(x) = \frac{x^3 + x^2 - 16x + 20}{x - 2}$$
 is not defind for x = 2. in order to make f(x) continuous at x = 2, here f(2) should be defined as:

A 0

C 2

D 3

Q45. Let
$$f(x)=\left\{ egin{array}{ll} 1,&x\leq -1\\ |x|,&-1< x<1\\ 0,&x\geq 1 \end{array} \right.$$
 then, f is:

1 Mark

A Continuous at x = -1

B Differentible at x = -1

C Everywhere continuous.

D Everywhere diffrentiable.

 $\textbf{Assertion (A)} \text{ The value of the constant 'k' so that } f(x) = \left\{ \begin{array}{l} kx^2, \text{if } x \leq 2 \\ 3, \text{if } x > 2 \end{array} \right. \text{is continuous at x = 2 is } k = \frac{4}{3}$

OIN MY PAID TEST GROUP WITH ANSWERS

1 Mark

D None of these

Q48. If $f(x) = (x+1)^{\cot x}$ be continuous at x = 0, then f(0) is equal to: 1 Mark

D None of these.

Q49.

If $f(x)=\left\{ egin{array}{ll} x\sin{\pi\over2}(x+1), & x\leq0 \\ {\tan{x-\sin x}\over x^3}, & x>0 \end{array}
ight.$ is continuous at x = 0, then a equals:

1 Mark

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

IOIN MY PAID TEST GROUP WITH ANSWERS

Q50.

If the function f(x) defined by $f(x) = \begin{cases} \frac{\log(1+3x) - \log(1-2x)}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then k = 0

A 1

D None of these.

Q51. Let f(x) = |x| + |x - 1|, then:

A f(x) is continuous at x = 0, as well as at x = 1

B f(x) is continuous at x = 0, but not at x = 1

C f(x) is continuous at x = 0, but not at x = 0

D None of these

Q52.

 $\text{The function } f(x) = \begin{cases} \frac{x^2}{a}, & 0 \leq x < 1 \\ a, & 1 \leq x < \sqrt{2} \\ \frac{2b^2 - 4b}{a}, & \sqrt{2} \leq x < \infty \end{cases} \\ \text{is continuous for } 0 \leq x < \infty, \text{ then the most suitable values of a and b are:}$

A a = 1, b = -1

c a = -1, b = 1

D None os these.

Q53.

If the fucnction $f(x) = \begin{cases} (\cos x)^{\frac{1}{x}}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuouse at x = 0, then the value of k is:

D e

Q54.

 $\text{Let } f(x) = \begin{cases} \frac{x-4}{|x-4|} + a, & \text{if } x < 4 \\ a+b, & \text{if } x = 4 \text{ Then, f(x) is continus at x = 4 when:} \\ \frac{x-4}{|x-4|} + b, & \text{if } x > 4 \end{cases}$

A a = 0, b = 0

Q55.

If f(x)= $\begin{cases} ax^2+b, & 0\leq x<1\\ 4, & x=1\\ x+3, & 1< x\leq 2 \end{cases}$ then the value of (a, b) for which f(x) cannot be continuous at x = 1, is:

A (2, 2)

C (4.0)

Q56.

The values of the constants a, b and for which the function $f(x) = \begin{cases} (1+ax)^{\frac{1}{x}}, & x>0 \\ b, & x=0 \\ \frac{(x+c)^{\frac{1}{2}}-1}{(x+c)^{\frac{1}{2}}-1}, & x>0 \end{cases}$ may be continuous at x = 0, are:

B $a = \log_e\left(\frac{2}{3}\right), \ b = \frac{2}{3}, \ c = -1$

 $\label{eq:absolute} \begin{array}{l} \textbf{A} \ a = \log_e\left(\frac{2}{3}\right), \ b = -\frac{2}{3}, \ c = 1 \\ \textbf{C} \ a = \log_e\left(\frac{2}{3}\right), \ b = \left(\frac{2}{3}\right), \ c = 1 \end{array}$

D None of these

Q57.

If $f(x) = |x - a| \phi(x)$, where $\phi(x)$ is continuous function, then:

1 Mark

1 Mark

A $f'(a^+) = \phi(a)$

B $f'(a^-) = -\phi(a)$

 $f'(a^+) = f'(a^-)$

Let $f(x) = |\cos x|$. Then, Q58.

D None of these

$$x=n\pi, n\in Z$$

 \mathbf{C} f(x) is everywhere continuous but not differentiable at

$$\mathrm{x}=(2\mathrm{n}+1)rac{\pi}{2},\mathrm{n}\in\mathrm{Z}.$$

D None of these.

The value of f(0), so that the function
$$f(x)=\frac{\sqrt{a^2+ax+x^2}-\sqrt{a^2+ax+x^2}}{\sqrt{a+x}-\sqrt{a-x}}$$
 becomes continuous for all x, given by:

$$\mathbf{A} \mathbf{a}^{\frac{3}{2}}$$

Q59.

Q60.

$$\mathbf{B} \mathbf{a}^{\frac{1}{2}}$$

$$c_{-a^{\frac{1}{2}}}$$

Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements **1 Mark**

1 Mark

Reason (R): $\sin x$ and x are continuous at on R.

Assertion (A): $f(x) = \sin x$ is continuous for all $x \in R$

A Both A and R are true and R is the correct explanation of A B Both A and R are true but R is NOT the correct explanation

C A is true but R is false.

D A is false but R is true.

Q61. The function
$$f(x) = \sin^{-1}(\cos x)$$
 is:

A Discontinuous at x = 0

B Continuous at
$$x = 0$$

C Differentiable at x = 0

D None of these.

$$\text{Q62.} \qquad \text{If } f(x) = \begin{cases} \frac{\log(1+ax) - \log(1-bx)}{x}, & x \neq 0 \\ k, & x = 0 \end{cases} \text{ and } f(x) \text{ is continous at } x = 0 \text{, then the value of } k \text{ is: }$$

$$\mathbf{B} a + b$$

$$\textbf{C}\,\log a + \log b$$

D None of these.

Q63. If
$$f(x) = \frac{1}{1-x}$$
, then the set of points discontinuity of the function $f(f(f(x)))$ is:

D None of these

Q64. Directions: In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion (A) f(x) = x - 1 + x - 2 is continuous but not differentiable at x = 1, 2.

Reason(R) Every differentiable function is continuous

A Both A and R are true and R is the correct explanation of A B Both A and R are true but R is NOT the correct explanation

of A.

C A is true but R is false

D A is false but R is true

Q65. The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at:

A 4

Q66. If
$$f(x) = x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)} + \ldots + \frac{x^2}{(1+x^2)} + \ldots$$
, then at x = 0, f(x):

A Has not limit.

B Is discontinuous.

C Is continuous but not differentiable.

D Is differentiable.

$$\text{Q67.} \qquad \text{If } f(x) = \begin{cases} \frac{\sin(\cos x) - \cos x}{(\pi - 2x)^2}, & x \neq \frac{\pi}{2} \\ k, & x = \frac{\pi}{2} \end{cases} \text{ is continuous at } x = \frac{\pi}{2}, \text{ then k is equal to:}$$

1 Mark

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

OIN MY PAID TEST GROUP WITH ANSWERS

A 0

D -1

Q68. The points of discontinuity of the function
$$f(x)=$$

$$\begin{cases} \frac{1}{5}(2x^2+3), & x\leq 1\\ 6-5x, & 1< x< 3 \text{ is (are):}\\ x-3, & x\geq 3 \end{cases}$$

1 Mark

 $\mathbf{A} \ \mathbf{x} = \mathbf{1}$

B
$$x = 3$$

$$C x = 1,$$

D None of these

The value of a for which the function
$$f(x) = \begin{cases} \frac{(4^x-1)^3}{\sin\left(\frac{x}{a}\right)\log\left\{\left(1+\frac{x^2}{3}\right)\right\}}, & x \neq 0 \\ 12(\log 4)^3, & x = 0 \end{cases}$$
 may be continuous at x = 0 is:

1 Mark

1 Mark

1 Mark

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

OIN MY PAID TEST GROUP WITH ANSWERS

Q70. The function
$$f(x) = \frac{4-x^2}{4x-x^3}$$

B Discontinuous exactly at two points.

C Discontinuous exactly at three points.

A Discontinuous at only one point.

D None of these.

Q71.

$$\text{If } f(x) = \begin{cases} \frac{\sin(a+1)}{x}, & x < 0 \\ c, & x = 0 \\ \frac{\sqrt{x+bx^2}-\sqrt{x}}{bx\sqrt{x}}, & x > 0 \end{cases} \quad \text{is continuouse at x = 0, then:}$$

A $a = -\frac{3}{2}, b = 0, c = \frac{1}{2}$

C
$$a = -\frac{3}{2}, b = 0, c = \frac{1}{2}$$

B $a = -\frac{3}{2}, b = 1, c = -\frac{1}{2}$

Q72.

The value of f(0), so that the function $f(x)=\frac{(27-2x)^{\frac{1}{3}}-3}{9-3(243+5x)^{\frac{1}{5}}}$ is continuous, is given by:

The function $f(x) = |\cos x|$ is: Q73.

A Everywhere continuous and differentiable.

B Everywhere continuous but not differentiable at $(2n+1)\tfrac{\pi}{2}, n \in Z$

C Neither continuous nor differentiable at

D None of these.

$$(2\mathrm{n}+1)rac{\pi}{2},\mathrm{n}\in\mathrm{Z}$$

If $f(x)=\left\{ \begin{array}{ll} \frac{36^x-9^x-4x+1}{\sqrt{2}-\sqrt{1+\cos x}}, & x\neq 0\\ k, & x=0 \end{array} \right.$ is continuous at x = 0, these k equals: Q74.

A $16\sqrt{2}\log 2\log 3$

c $16\sqrt{2}$ in 6 in 3

Q75. Choose the correct answers from the given four options:

The function $f(x)=\frac{4-x^2}{4x-x^3}$ is:

A Discontinuous at only one point.

B Discontinuous at exactly two points.

C Discontinuous at exactly three points.

D None of these.

Q76.

If $f(x)=rac{1-\sin x}{(\pi-2x)^2},$ when $x
eq rac{\pi}{2}=\lambda$ then f(x) will be continuous function at $x=rac{\pi}{2},$ where $\lambda=1$

D None of these

Function $f(x) = \cos x - 2\lambda x$ is monotonic decreasing when: Q77.

A $\lambda > \frac{1}{2}$

B $\lambda < \frac{1}{2}$

c $\lambda < 2$

D $\lambda > \tilde{2}$

If $f(x)=\left\{ egin{array}{ll} mx+1, & x\leq rac{\pi}{2} \\ \sin x+n, & n>rac{\pi}{2} \end{array}
ight.$ is continuous at $x=rac{\pi}{2},$ then: Q78.

 $\textbf{A}\ m=1,\ n=0$

C $n = \frac{m\pi}{2}$

 $\begin{array}{l} \textbf{B} \ m = \frac{n\pi}{2} + 1 \\ \textbf{D} \ m = n = \frac{\pi}{2} \end{array}$

The function $f(x) = |\cos x|$ is: Q79.

B Continuous but not differentiable at

A Differentiable at $x=(2n+1)\frac{\pi}{2}, n\in Z$

 $\mathrm{x}=(2\mathrm{n}+1)rac{\pi}{2},\mathrm{n}\in\mathrm{Z}$

 $\textbf{C}\,$ Neither differentiable nor continuous at $x=n\in Z$

D None of these.

If the function $f(x)=rac{2x-\sin^{-1}x}{2x+\tan^{-1}x}$ is continuous at each point of its domain, then the value of f(0) is: Q80.

1 Mark

WHATSAPP TEST GROUP FEES FROM JULY 1 TO TILL FINAL EXAM

> NEET RS.3500

www.ravitestpapers.com www.ravitestpapers.in