SEOUENCES AND SERIES T 70

121. Sum to n terms of the series $\frac{1}{1, 2, 3, 4} + \frac{1}{2, 3, 4, 5} + \frac{1}{3, 4, 5, 6} + \cdots$, is

a)
$$\frac{n^3}{3(n+1)(n+2)(n+3)}$$

a)
$$\frac{n^3}{3(n+1)(n+2)(n+3)}$$
b)
$$\frac{n^3 + 6n^2 - 3n}{6(n+2)(n+3)(n+4)}$$

c)
$$\frac{15n^2 + 7n}{4n(n+1)(n+5)}$$

d)
$$\frac{n^3 + 6n^2 + 11n}{18(n+1)(n+2)(n+3)}$$

122. If the sum of an infinite GP and the sum of square of its term is 3, then the common ratio of the first series is

b)
$$\frac{1}{2}$$

c)
$$\frac{2}{3}$$

d)
$$\frac{3}{2}$$

123. The *n*th term of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots$ will be

a)
$$n^2 + 2n + 1$$

b)
$$\frac{n^2 + 2n + 1}{8}$$

b)
$$\frac{n^2 + 2n + 1}{8}$$
 c) $\frac{n^2 + 2n + 1}{4}$

d)
$$\frac{n^2 - 2n + 1}{4}$$

124. If $\log 2$, $\log(2^x - 1)$ and $\log(2^x + 3)$ are in A.P., then $2, 2^x - 1, 2^x + 3$ are in

125. If $\log_2 a + \log_4 b + \log_4 c = 2$

$$\log_9 a + \log_3 b + \log_9 c = 2$$

 $\log_{16} a + \log_{16} b + \log_4 c = 2$, then

a)
$$a = \frac{2}{3}$$
, $b = \frac{27}{8}$, $c = \frac{32}{3}$

b)
$$a = \frac{27}{8}$$
, $b = \frac{2}{3}$, $c = \frac{32}{3}$

c)
$$a = \frac{32}{3}$$
, $b = \frac{27}{8}$, $c = \frac{2}{3}$

d)
$$a = \frac{2}{3}$$
, $b = \frac{32}{3}$, $c = \frac{27}{8}$

126. If the pth term of an AP be q and qth term be p, then its rth term will be

a)
$$p + q + r$$

b)
$$p + q - r$$

c)
$$p + r - q$$

d)
$$p - q - r$$

127. The sum of the series $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots$ is equal to

a)
$$\frac{(e^2-1)}{2}$$

b)
$$\frac{(e-1)^2}{2e}$$

c)
$$\frac{(e^2-1)}{2e}$$

$$d)\frac{(e^2-2)}{e}$$

128. If |a| < 1 and |b| < 1, then the sum of the series $a(a+b) + a^2(a^2 + b^2) + a^3(a^3 + b^3) + \cdots$ upto ∞, is

a)
$$\frac{a}{1-a} + \frac{ab}{1-ab}$$

a)
$$\frac{a}{1-a} + \frac{ab}{1-ab}$$
 b) $\frac{a^2}{1-a^2} + \frac{ab}{1-ab}$ c) $\frac{b}{1-b} + \frac{a}{1-a}$ d) $\frac{b^2}{1-b^2} + \frac{ab}{1-ab}$

c)
$$\frac{b}{1-b} + \frac{a}{1-a}$$

$$d) \frac{b^2}{1 - b^2} + \frac{ab}{1 - ab}$$

129. If $0 < y < 2^{1/3}$ and $x(y^3 - 1) = 1$, then $\frac{2}{x} + \frac{2}{3x^3} + \frac{2}{5x^5} + \cdots$ is equal to a) $\log\left(\frac{y^3}{2-y^3}\right)$ b) $\log\left(\frac{y^3}{1-y^3}\right)$ c) $\log\left(\frac{2y^3}{1-y^3}\right)$ d) $\log\left(\frac{y^3}{1-y^3}\right)$

a)
$$\log\left(\frac{y^3}{2-y^3}\right)$$

b)
$$\log\left(\frac{y^3}{1-y^3}\right)$$

c)
$$\log\left(\frac{2y^3}{1-y^3}\right)$$

d)
$$\log\left(\frac{y^3}{1-2y^3}\right)$$

130. $\{a_n\}$ and $\{b_n\}$ be two sequences given by $a_n = (x)^{\frac{1}{2^n}} + (y)^{\frac{1}{2^n}}$ and $b_n = (x)^{\frac{1}{2^n}} - (y)^{\frac{1}{2^n}}$ for all $n \in \mathbb{N}$, then $a_1a_2a_3 \dots a_n$ is equal to

a)
$$x - y$$

b)
$$\frac{x+y}{b_n}$$

c)
$$\frac{x-y}{b_n}$$

d)
$$\frac{xy}{b_n}$$

131. The sum of the infinite terms of the series $\frac{5}{3^2+7^2} + \frac{9}{7^2+11^2} + \frac{13}{11^2+15^2} + \dots$ is

a) $\frac{1}{10}$	b) $\frac{1}{36}$	c) $\frac{1}{54}$	d) $\frac{1}{72}$		
10	is 7, the last term is 448 an	34	/ ᠘		
a) 5	b) 4	c) 3	d) 2		
	of terms of a G.P. is 20 and su	-	=		
is		-			
a) 5	b) 3/5	c) 8/5	d) 1/5		
134. If three real numbers	a, b, c are in harmonic prog		e following is true?		
a) $\frac{1}{a}$, b, $\frac{1}{c}$ are in AP		b) $\frac{1}{bc}$, $\frac{1}{ca}$, $\frac{1}{ab}$ are in HP			
c) ab, bc, ca are in HF		d) $\frac{a}{b}$, $\frac{b}{c}$, $\frac{c}{a}$ are in HP			
135. $i^2 + i^4 + i^6 + \dots$ upto($2k + 1$)terms, $k \in \mathbb{N}$ is				
a) 0	b) 1	c) -1	d) <i>k</i>		
136. If $a^x = b$, $b^y = c$, $c^z = c$					
a) 0	b) 1	c) 2	d) 3		
	rithmetic progression, whe				
Then, $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_2}}$	$\frac{1}{\overline{a_3}} + \ldots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}}$ is equal	to			
·			d) None of these		
a) $\frac{n(n+1)}{2}$	b) $\frac{n-1}{\sqrt{a_1}+\sqrt{a_n}}$	c) $\frac{n(n-1)}{2}$	•		
	e integer then the largest integ	ger m such that $(n^m + 1)$ div	rides $(1 + n + n^2 + + n^{127})$,		
is a) 32	b) 63	c) 64	d) 127		
•	$\log_3(4.3^x - 1)$ are in AP, t	•	u) 127		
•	b) $1 - \log_3 4$		d) log 2		
			d) log ₄ 3		
	$\left(1 + \log_5\left(1 + \frac{1}{6}\right) + \log_5\left(1 + \frac{1}{6}\right)\right)$	7) +			
$+\log_5\left(1+\frac{1}{624}\right)$ is					
,	b) 4	c) 3	d) 2		
<u>.</u>	$\log_e x - \log_e (x+1) - \log_e$				
a) $\frac{1}{2}$	b) -1	c) 1	d) None of these		
L	ual positive quantities in H.P.,	then			
	b) $a^5 + c^5 > 2b^5$		d) None of these		
	n of a and b is $\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$, the		.,		
	••		D M C.1		
a) -1	b) 0	c) 1	d) None of these		
	roduct of r set of observati	on with geometric means	$G_1, G_2, \dots G_r$ respectively,		
then G is equal to	. 1 . 6	1) C C C			
a) $\log G_1 + \log G_2 + \dots$	o	b) $G_1, G_2,, G_r$			
c) $\log G_1$, $\log G_2$,, $\log G_3$	0 11	d) None of the above			
145. The sum of all 2 digit of a) 2475	b) 2530	c) 4905	d) 5049		
		-	u) 3047		
146. The sum of series $\frac{1}{1.2.3} + \frac{1}{3.4.5} + \frac{1}{5.6.7} + \cdots \infty$ is equal to					
a) $\log_e 2 - \frac{1}{2}$	b) log _e 2	c) $\log_e 2 + \frac{1}{2}$	d) $\log_e 2 + 1$		

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

JEE MONTHWISE TEST AND NOTES SCHEDULE 2026

JOIN MY JEE PAID WHATSAPP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.4000 TILL 2026 FINAL EXAM.

WHATSAPP - 8056206308

EVERY MONTH APPROXIMATELY 20 TO 30 PAPERS UPLOAD IN MY PAID GROUP

MAY SCHEDULE

8026206308

WHATSAPP

UNIT 1 – SETS, RELATIONS AND FUNCTIONS	UNIT 1 – PHYSICS AND MEASUREMENT	UNIT 1 – SOME BASIC CONCEPTS IN CHEMISTRY	
UNIT 2 - COMPLEX NUMBERS AND QUADRATIC EQUATIONS	UNIT 2 – KINEMATICS	UNIT 2 – ATOMIC STRUCTURE	
UNIT 3 – MATRICES AND DETERMINANTS	UNIT 3 – LAWS OF MOTION	UNIT 3 - CHEMICAL BONDING AND MOLECULAR STRUCTURE	

JUNE SCHEDULE

UNIT 4 - PERMUTATIONS AND COMBINATIONS	UNIT 4 – WORK, ENERGY AND POWER	UNIT 4 – CHEMICAL THERMODYNAMICS
UNIT 5 - BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS	UNIT 5 - ROTATIONAL MOTION	UNIT 5 – SOLUTIONS
UNIT 6 – SEQUENCE AND SERIES	UNIT 6 – GRAVITATION	UNIT 6 – EQUILIBRIUM

JULY SCHEDULE

UNIT 7 – LIMIT,	UNIT 7 - PROPERTIES OF	UNIT 7 – REDOX
CONTINUITY AND	SOLIDS AND LIQUIDS	REACTIONS AND
DIFFERENTIABILITY		ELECTROCHEMISTRY
UNIT 8 – INTEGRAL CALCULUS	UNIT 8 – THERMODYNAMICS	UNIT 8 - CHEMICAL KINETICS

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

IN MY PAID GROUP MONTHLY YOU CAN CUSTOMIZE ANY 10 TEST PAPERS

ACCORDING TO YOUR REQUIRED CHAPTERS

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308

UNIT 9 – DIFFERENTIAL	UNIT 9 - KINETIC THEORY	UNIT 9 – CLASSIFICATION
EQUATIONS	OF GASES	OF ELEMENTS AND
		PERIODICITY IN
		PROPERTIES

AUGUST SCHEDULE

UNIT 10 - CO-ORDINATE GEOMETRY	UNIT 10 – OSCILLATIONS AND WAVES	UNIT 10 - P - BLOCK ELEMENTS
UNIT 11 - THREE- DIMENSIONAL GEOMETRY	UNIT 11 – ELECTROSTATICS	UNIT 11 - D - AND F - BLOCK ELEMENTS
UNIT 12 - VECTOR ALGEBRA	UNIT 12 - CURRENT ELECTRICITY	UNIT 12 – CO-ORDINATION COMPOUNDS

SEPTEMBER SCHEDULE

UNIT 13 - STATISTICS AND	UNIT 13 - MAGNETIC EFFECTS	UNIT 13 - PURIFICATION AND
PROBABILITY	OF CURRENT AND MAGNETISM	CHARACTERISATION OF
		ORGANIC COMPOUNDS
UNIT 14 – TRIGONOMETRY	UNIT 14 - ELECTROMAGNETIC	UNIT 14 - SOME BASIC
	INDUCTION AND ALTERNATING	PRINCIPLES OF ORGANIC
	CURRENTS	CHEMISTRY
	UNIT 15 – ELECTROMAGNETIC	UNIT 15 – HYDROCARBONS
	WAVES	

Search Google - RAVI TEST PAPERS

OCTOBER SCHEDULE

JEE MATHS PYQS TEST PAPERS	UNIT 16 – OPTICS	UNIT 16 – ORGANIC
UPLOAD		COMPOUNDS CONTAINING
		HALOGENS
	UNIT 17 - DUAL NATURE OF	UNIT 17 – ORGANIC
	MATTER AND RADIATION	COMPOUNDS CONTAINING
		OXYGEN
	UNIT 18 – ATOMS AND NUCLEI	UNIT 18 – ORGANIC
		COMPOUNDS CONTAINING
		NITROGEN

NOVEMBER SCHEDULE

JEE MATHS PYQS TEST	UNIT	19	_	ELECTRONIC	UNIT 19 – BIOMOLECULES
PAPERS UPLOAD	DEVIC	ES			

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

IN MY PAID GROUP MONTHLY YOU CAN CUSTOMIZE ANY 10 TEST PAPERS

ACCORDING TO YOUR REQUIRED CHAPTERS

147.	147. If $\log_a ab = x$, then the value of $\log_b ab$ is					
	a) $\frac{x-1}{x}$	b) $\frac{x}{x-1}$	c) $\frac{x}{x+1}$	d) $\frac{x+1}{x}$		
	The value of $1.1! + 2.2! + 1.1!$		<i>λ</i> Τ 1	X		
	a) $(n + 1)!$		c) $(n+1)!-1$	d) None of these		
149.	The value of log ₂ [log ₂ {log ₃	$(\log_3 27^3)$] is				
	a) 1	b) 0	c) 3	d) 2		
150.	The sum to <i>n</i> terms of the s $n(n+1)(2n+1)$		$n(n \perp 1)(2n \perp 1)$	$n(n \perp 1)(2n \perp 1)$		
	a) $\frac{n(n+1)(2n+1)}{3}$	b) $\frac{2n(n+1)(2n+1)}{3}$	c) $\frac{n(n+1)(2n+1)}{6}$	d) $\frac{n(n+1)(2n+1)}{9}$		
151.	If arithmetic mean of two then <i>H</i> is equal to	o positive numbers is A , the	heir geometric mean is G	and harmonic mean is H ,		
	a) G^2/A	b) A^2/G^2	c) A/G^2	d) G/A^2		
152.	The sum of the infinite so	eries $1 + \frac{1}{2!} + \frac{1.3}{4!} + \frac{1.3.5}{6!} + \cdots$	··· is			
		2		1		
	a) <i>e</i>	b) <i>e</i> ²	c) \sqrt{e}	d) $\frac{1}{e}$		
153.		th common difference d , the				
		$\operatorname{osec} a_2 \operatorname{cosec} a_3 + \dots + \operatorname{cosec} a_n$		D		
154			c) $\tan a_1 - \tan a_n$ ast term is 243, then the r			
151.	a) 6	b) 5	c) 4	d) 10		
155.	,	e pth, qth and rth terms of a	•	,		
	$\Delta = \begin{vmatrix} bc & ca & ab \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} $ equals					
	a) 1	•	c) -1	d) None of these		
156.	If $a\left(\frac{1}{b} + \frac{1}{c}\right)$, $b\left(\frac{1}{c} + \frac{1}{a}\right)$, $c\left(\frac{1}{a}\right)$	$+\frac{1}{b}$ are in A.P., then				
	a) a, b, c are in A.P.	b) $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P.	c) a, b, c are in H.P.	d) $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P		
157.	$If \log(x+z) + \log(x-2y)$	$(z) + z = 2 \log(x - z)$, then x ,	y, z are in			
150	a) H.P.	b) G.P.	c) A.P.	d) None of these		
	If x , y , z are three consecut					
	L LXZII	$+\frac{1}{3}\left(\frac{1}{2 \times z+1}\right)^3 + \cdots$ is equal to				
150	a) $\log_e x$	b) log _e y	c) $\log_e z$	d) None of these		
159.	The value of $9^{1/3} \times 9^{1/9} \times 9^{1/9}$ a) 9	9 ^{1/27} ×∞, is b) 1	c) 3	d) None of these		
160.				uj None of these		
	60. The coefficient of x^n in the series $1 + \frac{a+bx}{1!} + \frac{(a+bx)^2}{2!} + \frac{(a+bx)^3}{3!} = \cdots \infty$ is					
	a) $\frac{(ab)^n}{n!}$	b) $e^b \cdot \frac{a^n}{n!}$	c) $e^a \cdot \frac{b^a}{m!}$	d) $e^{a+b} \cdot \frac{(ab)^n}{n!}$		
161.	101	n: 1/10 and 12 th term is 1/25,	701	n:		
	a) $\frac{1}{27}$	b) $\frac{1}{41}$	c) $\frac{1}{45}$	d) $\frac{1}{49}$		
1(2	37	41	45	49		
162.	If $2/3$, k , $5/8$ are in AP, to a) 15	hen value of <i>k</i> is b) 21	c) 12	d) 31/48		
163	-			w) 31/40		
_001		$+\frac{1}{3} \cdot \frac{1}{4} + \frac{1}{5} \cdot \frac{1}{4^2} + \frac{1}{7} \cdot \frac{1}{4^3} + \cdots \propto$		D lo- 4		
	a) $\log_e 1$	b) log _e 2	c) $\log_e 3$	d) $\log_e 4$		

178. The value of $(0.16)^{\log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots \infty\right)}$, is

a) 2

b) 3

c) 4

d) None of these

179. The value of $\frac{\log_a(\log_b x)}{\log_b(\log_a b)}$ is

a) $\log_b a$

b) $\log_a b$

c) $-\log_a b$

d) $-\log_b a$

180. $\frac{1}{1.3} + \frac{1}{2.5} + \frac{1}{3.7} + \frac{1}{4.9} + \dots$ is equal to

a) $2 \log_e 2 - 2$

b) $2 - \log_e 2$

c) $2 \log_e 4$

d) $\log_e 4$