JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY

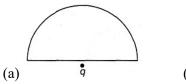
ELECTROSTATICS WORKSHEET

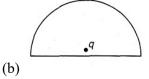
THIS PAPER ANSWERS AVAILABLE IN MY WEBSITE WWW.ravitestpapers.in TYPE IN SEARCH BOX FOR ANSWERS

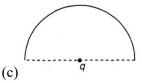
- Q 1. The mass of an electron is 9.11×10^{-31} kg, that of a proton is 1.67×10^{-27} kg. Find the ratio F_e/F_g of the electric force and the gravitational force exerted by the proton on the electron,
- Q 2. Find the dimensions and units of ε_0 .
- Q 3. Three point charges q are placed at three vertices of an equilateral triangle of side a. Find magnitude of electric force on any charge due to the other two.
- Q 4. Three point charges each of value +q are placed on three vertices of a square of side a metre. What is the magnitude of the force on a point charge of value q coulomb placed at the centre of the square?
- Q 5. Coulomb's law states that the electric force becomes weaker with increasing distance. Suppose that instead, the electric force between two charged particles were independent of distance. In this case, would a neutral insulator still be attracted towards the comb.
- Q 6. A metal sphere is suspended from a nylon thread. Initially the metal sphere is uncharged. When a positively charged glass rod is brought close to the metal sphere, the sphere is drawn towards the rod. But if the sphere touches the rod, it suddenly flies away from the rod. Explain, why the sphere is first attracted then repelled?
- Q 7. Is there any lower limit to the electric force between two particles placed at a certain distance?
- Q 8. Does the force on a charge due to another charge depend on the charges present nearby?
- Q 9. The electric force on a charge q_1 due to q_2 is (4 i 3 j) N. What is the force on q_2 due to q_1 ?

PART 2 Q

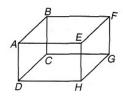
- Q 1. A point charge $q_1 = 1.0 \mu C$ is held fixed at origin. A second point charge $q_2 = -2.0 \mu C$ and a mass 10^4 kg is placed on the x-axis, 1.0 m from the origin. The second point charge is released from rest. What is its speed when it is 0.5 m from the origin?
- Q 2. A point charge $q_1 = -1.0 \,\mu\text{C}$ is held stationary at the origin. A second point charge $q_2 = +2.0 \,\mu\text{C}$ moves from the point (1.0 m, 0, 0) to (2.0 m, 0, 0). How much work is done by the electric force on q_2 ?


CHECK MY WEBSITES DAILY FOR FREE STUDY MATERIALS

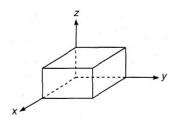

JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY


- Q 3. A point charge q_1 is held stationary at the origin. A second charge q_2 is placed at a point a, and the electric potential energy of the pair of charges is -6.4×10^{-8} J. When the second charge is moved to point b, the electric force on the charge does 4.2×10^{-8} J of work. What is the electric potential energy of the pair of charges when the second charge is at point b?
- Q 4. Is it possible to have an arrangement of two point charges separated by finite distances such that the electric potential energy of the arrangement is the same as if the two charges were infinitely far apart? What if there are three charges?

PART 3 Q


Q 1. In figure (a), a charge q is placed just outside the centre of a closed hemisphere. In figure (b), the same charge q is placed just inside the centre of the closed hemisphere and in figure (c), the charge is placed at the centre of hemisphere open from the base. Find the electric flux passing through the hemisphere in all the three cases.

Q 2. A charge q is placed at point D of the cube. Find the electric flux passing through the face EFGH and face AEHD.



- Q 3. Net charge within an imaginary cube drawn in a uniform electric field is always zero. Is this statement true or false.
- Q 4. A hemisphere body of radius R is placed in a uniform electric field E. What is the flux linked with the curved surface if, the field is
 - (a) parallel to the base
- (b) perpendicular to the base.
- Q 5. A charge q₀ is distributed uniformly on a ring of radius R. A sphere of equal radius R is constructed with its centre on the circumference of the ring. Find the electric flux through the surface of the sphere.
- Q 6. A cube has sides of length L = 0.2 m. It is placed with one corner at the origin as shown in figure.

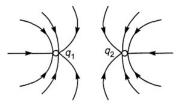
CHECK MY WEBSITES DAILY FOR FREE STUDY MATERIALS

JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY

The electric field is uniform and given by E = (2.5 N/C)i - (4.2 N/C)j. Find the electric flux through the entire cube.

PART 4 MCQS

Units of electric flux are Q 1.


(a)
$$\frac{N-m^2}{C^2}$$

- (a) $\frac{N-m^2}{C^2}$ (b) $\frac{N}{C^2-m^2}$
- (c) volt-m
 - (d) volt-m³
- A neutral pendulum oscillates in an uniform electric field as shown in figure. If a positive charge is Q 2. given to the pendulum then its time period

THIS PAPER ANSWERS AVAILABLE IN MY WEBSITE

- (a) will increase
- (b) will decrease
- (c) will remain constant
- (d) will first increase then decrease
- Identify the correct statement about the charges q_1 and q_2 Q 3.
- www.ravitestpapers.in TYPE IN SEARCH BOX **FOR ANSWERS**

- (a) q₁ and q₂ both are positive
- (b) q₁ and q₂ both are negative
- (c) q_1 is positive q_2 is negative
- (d) q_2 is positive and q_1 is negative
- Q 4. Three identical charges are placed at corners of an equilateral triangle of side l.If force between any two charges is F, the work required to double the dimensions of triangle is
 - (a) -3Fl
- (b) 3Fl
- (c) (-3/2) Fl
- (d) (3/2) F1

CHECK MY WEBSITES DAILY FOR FREE STUDY MATERIALS

JEE MONTHWISE TEST AND NOTES SCHEDULE 2026

JOIN MY JEE PAID WHATSAPP TEST GROUP WITH ANSWERS.

ONE TIME FEES RS.4000 TILL 2026 FINAL EXAM.

WHATSAPP - 8056206308

EVERY MONTH APPROXIMATELY 20 TO 30 PAPERS UPLOAD IN MY PAID GROUP

MAY SCHEDULE

earch Google

UNIT 1 – SETS, RELATIONS AND FUNCTIONS	UNIT 1 – PHYSICS AND MEASUREMENT	UNIT 1 – SOME BASIC CONCEPTS IN CHEMISTRY
UNIT 2 - COMPLEX NUMBERS AND QUADRATIC EQUATIONS	UNIT 2 – KINEMATICS	UNIT 2 – ATOMIC STRUCTURE
UNIT 3 – MATRICES AND DETERMINANTS	UNIT 3 – LAWS OF MOTION	UNIT 3 - CHEMICAL BONDING AND MOLECULAR STRUCTURE

JUNE SCHEDULE

UNIT 4 - PERMUTATIONS AND COMBINATIONS	UNIT 4 – WORK, ENERGY AND POWER	UNIT 4 – CHEMICAL THERMODYNAMICS
UNIT 5 - BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS	UNIT 5 - ROTATIONAL MOTION	UNIT 5 – SOLUTIONS
UNIT 6 – SEQUENCE AND SERIES	UNIT 6 – GRAVITATION	UNIT 6 – EQUILIBRIUM

JULY SCHEDULE

UNIT 7 – LIMIT,	UNIT 7 - PROPERTIES OF	UNIT 7 – REDOX
CONTINUITY AND	SOLIDS AND LIQUIDS	REACTIONS AND
DIFFERENTIABILITY		ELECTROCHEMISTRY
UNIT 8 – INTEGRAL CALCULUS	UNIT 8 – THERMODYNAMICS	UNIT 8 - CHEMICAL KINETICS

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

UNIT 9 – DIFFERENTIAL	UNIT 9 - KINETIC THEORY	UNIT 9 – CLASSIFICATION
EQUATIONS	OF GASES	OF ELEMENTS AND
		PERIODICITY IN
		PROPERTIES

AUGUST SCHEDULE

UNIT 10 - CO-ORDINATE GEOMETRY		INATE	_	10 – C AND		LATIONS ES	UNIT 10 - P - I ELEMENTS	BLOCK
UNIT 11 DIMENSIONA			UNIT 11	L — ELE	CTR	OSTATICS	UNIT 11 - D - ANI BLOCK ELEMENTS	D F -
UNIT 12 ALGEBRA	– VI	ECTOR	UNIT ELECTR		-	CURRENT	UNIT 12 – CO-ORDINA COMPOUNDS	ATION

SEPTEMBER SCHEDULE

UNIT 13 - STATISTICS AND	UNIT 13 - MAGNETIC EFFECTS	UNIT 13 - PURIFICATION AND
PROBABILITY	OF CURRENT AND MAGNETISM	CHARACTERISATION OF
		ORGANIC COMPOUNDS
UNIT 14 – TRIGONOMETRY	UNIT 14 - ELECTROMAGNETIC	UNIT 14 - SOME BASIC
	INDUCTION AND ALTERNATING	PRINCIPLES OF ORGANIC
	CURRENTS	CHEMISTRY
	UNIT 15 - ELECTROMAGNETIC	UNIT 15 – HYDROCARBONS
	WAVES	

OCTOBER SCHEDULE

JEE MATHS PYQS TEST PAPERS	UNIT 16 – OPTICS	UNIT 16 – ORGANIC
UPLOAD		COMPOUNDS CONTAINING
		HALOGENS
	UNIT 17 - DUAL NATURE OF	UNIT 17 – ORGANIC
	MATTER AND RADIATION	COMPOUNDS CONTAINING
		OXYGEN
	UNIT 18 – ATOMS AND NUCLEI	UNIT 18 – ORGANIC
		COMPOUNDS CONTAINING
		NITROGEN

NOVEMBER SCHEDULE

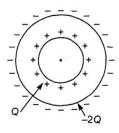
JEE MATHS PYQS TEST	UNIT 19 -	ELECTRONIC	UNIT 19 – BIOMOLECULES
PAPERS UPLOAD	DEVICES		

WEBSITE <u>www.ravitestpapers.com</u> BLOG <u>www.ravitestpapers.in</u>

Q 5. A proton, a deuteron and an alpha particle are accelerated through potentials of V, 2 V and 4 V

(a) 1:1:1 (b) $1:\sqrt{2}:1$ (c) $\sqrt{2}:1:1$ (d) $1:1:\sqrt{2}$

respectively. Their velocity will bear a ratio

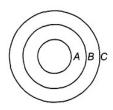

JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY

Q 6.	Electric potential at a point P, r distance away due to a point charge q at point A is V. If twice of this					
	_	•	ce of a hollow sphere	of radius 4rwith centre at point A,		
	the potential at P nov					
	(a) V	(b) V/2	(c) V/4	(d) V/8		
Q 7.	Four charges +q, -q,	+ q and - q are placed	in order on the four co	nsecutive corners of a square of		
	side a. The work don	e in interchanging the	positions of any two n	eighbouring charges of the opposite		
	sign is					
	(a) $\frac{q^2}{4\pi\epsilon_0 a} \left(-4 + \sqrt{2}\right)$	(b) $\frac{q^2}{4\pi\epsilon_0 a}(4+2\sqrt{2})$	$\text{(c) } \frac{q^2}{4\pi\epsilon_0 a} (4 - 2\sqrt{2})$	$(d) \frac{q^2}{4\pi\epsilon_0 a} (4 + \sqrt{2})$		
Q 8.	Two concentric sphere	res of radii R and 2R a	re charged. The inner	sphere has a charge of 1 μC and the		
	outer sphere has a ch	arge of 2 μC of the sar	ne sign. The potential	is 9000 V at a distance 3R from the		
	common centre. The	value of R is				
	(a) 1 m	(b) 2 m	(c) 3 m	(d) 4 m		
Q 9.				ts two half parts. The electric		
	potential at a point or	n its axis at a distance	of $2\sqrt{2}$ R from its cent	tre is $k = \frac{1}{4\pi\epsilon_0}$		
	(a) $\frac{3kq}{R}$	(b) $\frac{kq}{3R}$	(c) $\frac{kq}{R}$	(d) $\frac{kq}{\sqrt{3}R}$		
Q 10.	A particle A having a	a charge of 2.0×10^{-6} C	and a mass of 100 g	is fixed at the bottom of a smooth		
	inclined plane of incl	ination 30°. Where she	ould another particle B	having same charge and mass, be		
	placed on the incline	d plane so that B may	remain in equilibrium?			
	(a) 8 cm from the bot	ttom	(b) 13 cm from the b	ottom		
	(c) 21 cm from the be	ottom	(d) 27 cm from the b	ottom		
Q 11.	Four positive charges	s $(2\sqrt{2}-1)Q$ are arran	ged at the four corner	of a square. Another charge q is		
	placed at the centre of	of the square. Resulting	g force acting on each	corner charge is zero if q is		
	(a) $-\frac{7Q}{4}$	(b) $-\frac{4Q}{7}$	(c) –Q	(d) $-(\sqrt{2}+1)Q$		

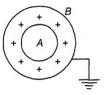
JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY

Q 12.	C/m ² . It will strike the sheet after the time (approximately)						
			(c) $2\sqrt{2} \mu s$	(d) $4\sqrt{2} \mu s$			
Q 13.	Two point charges +	-q and -q are placed a	a distance x apart. A thir	d charge is so placed that all the			
	three charges are in	equilibrium. Then	_				
	(a) unknown charge	is -4q/9	(b) unknown charge	e is - 9q/4			
	(c) it should be at (x.	/3) from smaller char	rge between them				
	(d) None of the above	/e					
Q 14.	Charges 2q and - q a	are placed at (a, 0) an	nd (-a, 0) as shown in the	e figure. The coordinates of the point			
	at which electric fiel	ld intensity is zero w	ill be (x, 0) where				
			<i>y</i>				
		-q ⊝—	+2q ⊕ > x				
	(a) - $a < x < a$	(b) x < - a	(c) $x > -a$	(d) $0 < x < a$			
Q 15.	Five point charges (-	+ q each) are placed	at the five vertices of a r	regular hexagon of side 2a. What is			
	the magnitude of the net electric field at the centre of the hexagon?						
	(a) $\frac{1}{4\pi\epsilon_0} \frac{q}{a^2}$	(b) $\frac{q}{16\pi\epsilon_0 a^2}$	(c) $\frac{\sqrt{2}q}{4\pi\epsilon_0 a^2}$	(d) $\frac{5q}{16\pi\epsilon_0 a^2}$			
Q 16.	Two identical small	conducting spheres l	having unequal positive	charges q ₁ and q ₂ are separated by a			
	distance r. If they are now made to touch each other and then separated again to the same distance,						
	the electrostatic force	the electrostatic force between them in this case will be					
	(a) less than before	(b) same as before	(c) more than before	e (d) zero			
Q 17.	Three concentric con	nducting spherical sh	nells carry charges + 4Q	on the inner shell - 2Q on the			
	middle shell and + 6Q on the outer shell. The charge on the inner surface of the outer shell is						
	(a) 0	(b) 4Q	(c) -Q	(d) -2Q			
Q 18.	1000 drops of same	size are charged to a	potential of 1 V each. If	f they coalesce to form a single drop,			
	its potential would b	e					
	(a) V	(b) 10 V	(c) 100 V	(d) 1000 V			
Q 19.	Two concentric cond	ducting spheres of ra	dii R and 2R are carryin	g charges Q and -2Q respectively. If			
	the charge on inner s	sphere is doubled, the	e potential difference be	tween the two spheres will			

JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY



(a) become two times


(b) become four times

(c) be halved

- (d) remain same
- Q 20. Charges Q, 2Q and Q are given to three concentric conducting spherical shells A, B and C respectively as shown in figure. The ratio of charges on the inner and outer surfaces of shell C will be

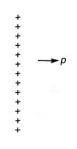
- (a) $+\frac{3}{4}$ (b) $\frac{-3}{4}$
- (c) $\frac{3}{2}$
- (d) $\frac{-3}{2}$
- Q 21. The electric field in a region of space is given by $\stackrel{1}{E} = 5\hat{i} + 2\hat{j}$ N/C. The flux of $\stackrel{1}{E}$ due to this field through an area 1 m² lying in the y-z plane, in SI units, is
 - (a) 5
- (b) 10
- (c) 2
- (d) $5\sqrt{29}$
- Q 22. A charge Q is placed at each of the two opposite corners of a square. A charge q is placed at each of the other two corners. If the resultant force on each charge q is zero, then
 - (a) $q = \sqrt{2}Q$
- (b) $q = -\sqrt{2}Q$
- (c) $q = 2\sqrt{2}Q$
- (d) $q = -2\sqrt{2}O$
- Q 23. A and B are two concentric spherical shells. If A is given a charge + q while B is earthed as shown in figure, then THIS PAPER ANSWERS

AVAILABLE IN MY WEBSITE

www.ravitestpapers.in TYPE IN SEARCH BOX FOR **ANSWERS**

- (a) charge on the outer surface of shell B is zero
- (b) the charge on B is equal and opposite to that of A
- (c) the field inside A and outside B is zero

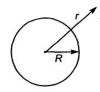
CHECK MY WEBSITES DAILY FOR FREE STUDY MATERIALS


JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY

	(d) All of the above					
Q 24.	A solid sphere of radius R has charge 'q' uniformly distributed over its volume. The distance from it					
	surface at which the	electrostatic potential i	s equal to half of the po	otential at the centre is		
	(a) D	(b) 2R	(c) $\frac{R}{3}$	(d) $\frac{R}{2}$		
	(a) R	(b) 2K	$(c) \frac{1}{3}$	$(\mathbf{d}) \frac{1}{2}$		
Q 25.	Four dipoles each of	magnitudes of charges	±e are placed inside a	sphere. The total flux of E		
	coming out of the sph	nere is				
		4e	8e	(1) NI C4		
	(a) zero	(b) $\frac{4e}{\varepsilon_0}$	$\frac{(c)}{\varepsilon_0}$	(d) None of these		
Q 26.	A pendulum bob of n	nass m carrying a char	ge q is at rest with its s	tring making an angle with the		
	vertical in a uniform	horizontal electric field	d E. The tension in the	string is		
	(a) mg	(b) ma	(c) $\frac{qE}{\sin \theta}$	(d) qE		
	(a) $\frac{\text{mg}}{\sin \theta}$	(b) mg	$\frac{\cos \theta}{\sin \theta}$	$\frac{(d)}{\cos \theta}$		
Q 27.	Two isolated, charged	d conducting spheres of	of radii a and b produce	the same electric field near their		
	surfaces. The ratio of electric potentials on their surfaces is					
	(a) $\frac{a}{b}$	(b) $\frac{b}{a}$	(c) $\frac{a^2}{b^2}$	(d) $\frac{b^2}{a}$		
	υ	a	U	a		
Q 28.	Two point charges + q and - q are held fixed at (- a, 0) and (a, 0) respectively of a x-y coordinate					
	system, then					
	(a) the electric field I	Eat all points on the x-	axis has the same direc	etion		
	(b) E at all points on	the y-axis is along \hat{i}				
	(c) positive work is d	one in bringing a test of	charge from infinity to	the origin		
	(d) All of the above					
Q 29.	A conducting shell S	having a charge Q is	surrounded by an unch	arged concentric conducting		
	spherical shell S_2 . Let the potential difference between S_1 and that S_2 be V. If the shell S_2 is now					
	given a charge -3Q, t	he new potential differ	rence between the same	e two shells is		
	(a) V	(b) 2V	(c) 4 V	(d) -2V		
Q 30.	At a certain distance	from a point charge, th	ne field intensity is 500	V/m and the potential is - 3000 V		
	The distance to the ch	harge and the magnitud	le of the charge respec	tively are		
	(a) 6m and 6μC	(b) 4m and 2μC		(d) 6m and 2μC		
	1					

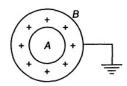
JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY

- Q 31. Two point charges q₁ and q₂ are placed at a distance of 50 m from each other in air, and interact with a certain force. The same charges are now put in oil whose relative permittivity is 5. If the interacting force between them is still the same, their separation now is
 - (a) 16.6 m
- (b) 22.3 m
- (c) 28.4 m
- (d) 25.0 cm
- Q 32. An infinite line of charge λ per unit length is placed along the y-axis. The work done in moving a charge q from A(a, 0) to B(2a, 0) is


 - (a) $\frac{\mathrm{q}\lambda}{4\pi\epsilon_0}\ln 2$ (b) $\frac{\mathrm{q}\lambda}{2\pi\epsilon_0}\ln\left(\frac{1}{2}\right)$ (c) $\frac{\mathrm{q}\lambda}{4\pi\epsilon_0}\ln\sqrt{2}$ (d) $\frac{\mathrm{q}\lambda}{4\pi\epsilon_0}\ln 2$
- Q 33. An electric dipole is placed perpendicular to an infinite line of charge at some distance as shown in figure. Identify the correct statement.

THIS PAPER ANSWERS **AVAILABLE IN MY WEBSITE** www.ravitestpapers.in TYPE IN SEARCH BOX FOR **ANSWERS**

- (a) The dipole is attracted towards the line charge
- (b) The dipole is repelled away from the line charge
- (c) The dipole does not experience a force
- (d) The dipole experiences a force as well as a torque
- Q 34. An electrical charge 2×10^{-8} C is placed at the point (1,2,4)m. At the point (4, 2, 0) m, the electric
 - (a) potential will be 36 V


- (b) field will be along y-axis
- (c) field will increase if the space between the points is filled with a dielectric
- (d) All of the above
- Q 35. If the potential at the centre of a uniformly charged hollow sphere of radius R is V then electric field at a distance r from the centre of sphere will be (r > R)

- (a) $\frac{VR}{r^2}$ (b) $\frac{Vr}{r^2}$
- (c) $\frac{VR}{r}$ (d) $\frac{VR}{R^2 + r^2}$
- Q 36. A and B are two concentric spheres. If A is given a charge Q while B is earthed as shown in figure,

CHECK MY WEBSITES DAILY FOR FREE STUDY MATERIALS

JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY

- (a) the charge density of A and B are same (b) the field inside and outside A is zero
- (c) the field between A and B is not zero
- (d) the field inside and outside B is zero
- Q 37. There is an electric field E in x-direction. If the work done on moving a charge of 0.2 C through a distance of 2 m along a line making an angle 60° with x-axis is 4 J, then what is the value of E?
 - (a) $\sqrt{3}$ N/C
- (b) 4N/C
- (c) 5N/C
- (d) 20N/C
- Q 38. Two thin wire rings each having radius R are placed at a distance d apart with their axes coinciding. The charges on the two rings are + Q and - Q. The potential difference between the centres of the two rings is
 - (a) zero

(b) $\frac{Q}{4\pi\epsilon_0} \left[\frac{1}{R} - \frac{1}{\sqrt{R^2 + d^2}} \right]$

(c) $\frac{Q}{4\pi\epsilon_{o}d^{2}}$

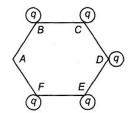
- (d) $\frac{Q}{2\pi\epsilon_0} \left[\frac{1}{R} \frac{1}{\sqrt{R^2 + d^2}} \right]$
- Q 39. The electric field at a distance 2 cm from the centre of a hollow spherical conducting shell of radius 4 cm having a charge of 2×10^{-3} C on its surface is
 - (a) $1.1 \times 10^{10} \text{ V/m}$ (b) $4.5 \times 10^{-10} \text{V/m}$ (c) $4.5 \times 10^{10} \text{ V/m}$

- Q 40. Charge Q is given a displacement $\hat{r} = a\hat{i} + b\hat{j}$ in an electric field $\hat{E} = E_1\hat{i} + E_2\hat{j}$. The work done is
 - (a) $Q(E_1a + E_2b)$

(b) $Q\sqrt{(E_1a)^2+(E_2b)^2}$

(c) $Q(E_1 + E_2) \sqrt{a^2 + b^2}$

(d) $Q\sqrt{E_1^2 + E_2^2}\sqrt{a^2 + b^2}$


JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY

PART 5 Q

Match the Columns

Q 1. Five identical charges are kept at five vertices of a regular hexagon. Match the following two columns at centre of the hexagon. If in the given situation electric field at centre is E. Then

THIS PAPER ANSWERS AVAILABLE IN MY WEBSITE www.ravitestpapers.in TYPE IN SEARCH BOX FOR ANSWERS

Column I	Column. II
(a) If charge at B is removed then electric field will become	(P) 2E
(b) If charge at C is removed then electric field will become	(q) E
(c) If charge at D is removed then electric field will become	(r) zero
(d) If charges at B and C both are removed then electric field will become	(s) $\sqrt{3}E$

Note Only magnitudes of electric field are given.

Q 2. In an electric field $\stackrel{1}{E} = (2\hat{i} + 4\hat{j})N/C$, electric potential at origin is 0 V. Match the following two columns.

Column I	Column II
(a) Potential at (4m. 0)	(p.) 8 V
(b) Potential at (-4m, 0)	(q) -8V
(c) Potential at (0, 4m)	(r) 16 V
(d) Potential at (0, -4 m)	(s) -16 V

Q 3. Electric potential on the surface of a solid sphere of charge is V. Radius of the sphere is 1 m. Match the following two columns.

Column I	Column II
(a) Electric potential at $r = \frac{R}{2}$	$(p) \frac{V}{4}$
(b) Electric potential at $r = 2R$	$(q) \frac{V}{2}$

CHECK MY WEBSITES DAILY FOR FREE STUDY MATERIALS

JOIN PAID GROUP RS.3000 FOR 1 YEAR OR PAY RS.500 MONTHLY

(c) Electric field at $r = \frac{R}{2}$	$(r) \frac{3V}{4}$
(d) Electric field at $r = 2R$	(s) None of these

Q 4. Match the following two columns.

Column I	Column II
(a) Electric potential	(p) [MLT ⁻³ A ⁻¹]
(b) Electrical field	$(q) [ML^3T^{-3}A^{-1}]$
(c) Electric flux	$(r) [ML^2T^{-3}A^{-1}]$
(d) Permittivity of free space	(s) None of these

Q 5. Match the following two columns.

Column I	Column II
(a) Electric field due to charged spherical shell	(P)
(b) Electric potential due to charged spherical shell	(q) h
(c) Electric field due to charged solid sphere	(r)
(d) Electric potential due to charged solid sphere	(s) None of these

LS

IN FOR 1 YEAR OR PAY MONTHLY FEES RS.500