RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

CURRENT ELECTRICITY

Current density: $j = i/A = \sigma E$

Drift speed: $v_d = \frac{1}{2} \frac{eE}{m} T = \frac{t}{neA}$

Resistance of a wire: $R = \rho l/A$, where $\rho = 1/\sigma$

Temp. dependence of resistance: $R = R_0(1 + \alpha \Delta T)$

Ohm's law: V = iR

ELECTRIC CONDUCTIVITY AND RESISTIVITY:

Material	Resistivity ρ (ohmm)
Silver	1.59×10^{-8}
Copper	1.68 × 10 ⁻⁸
Copper, Annealed	1.72×10^{-8}
Aluminium	2.65×10^{-8}
Tungsten	5.6 × 10 ⁻⁸
Iron	9.71×10^{-4}
Platinum	10.6 × 10 ⁻⁸
Manganin	48.2×10^{-8}
Lead	22 × 10 ⁻⁸
Mercury	98 × 10 ⁻⁸
Nichrome (Ni.Fe.Cr)	100×10^{-11}
Constantan	49 × 10 ⁻⁸
Carbon (graphite)	$3-60\times10^{-5}$
Germanium	$1-500 \times 10^{-3}$
Silicon	0.1 - 60
Glass	1 - 10000 × 10°
Quartz (fused)	7.5×10^{17}
Hard rubber	$1-100 \times 10^{13}$

THIS TEST ANSWERS YOU CAN VIEW ONLY IN MY

WHATSAPP CHANNEL OR CHECK www.ravitestpapers.in

RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

• KIRCHHOFF'S LAW:

- (i) the junction law: The algebraic sum of all the currents directed towards a node is zero i.e., $\Sigma_{\rm node}\,Ii=0$.
- (ii) The loop law: the algebraic sum of all the potential along a closed loop in a circuit is zero i.e., $\Sigma_{\rm loop} \Delta V_{\ell} = 0$

Desistance in parallel:
$$\frac{1}{R_{gg}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Resistance in sectors:
$$R_{\epsilon q} = R_1 + R_2$$

Wheatstone bridge:

Balanced if
$$R_1/R_2 = R_3/R_4$$

Electric power:
$$P = V^2/R = I^2R = IV$$

Galvanometer as an Ammeter:
$$i_g G = (i - i_g)S$$

Galvanometer as a Voltmeter:
$$V_{AB} = i_g(R + G)$$

Charging of capacitors:
$$q(t) = CV \left[1 - e^{-\frac{t}{RC}}\right]$$

Discharging of capacitors:
$$q(t) = q_0 e^{-\frac{t}{RC}}$$

Time constant in RC circuit:
$$\tau = RC$$

Peltier effect: emf e =
$$\frac{\Delta H}{\Delta Q}$$
 = $\frac{\text{peltier heat}}{\text{charge transferred}}$

Seeback effect

- 1. Thermo-emf: $e = aT + \frac{1}{2}bT^2$
- 2. Thermoelectric power: de/dt = a + bT
- 3. Neutral temp: $T_n = -a/b$
- 4. Inversion temp: $T_t = -2a/b$

Thomson effect: emf
$$e = \frac{\Delta H}{\Delta Q} = \frac{\text{Thomson heat}}{\text{charge transferred}} = \sigma \Delta T$$

Faraday's law of electrolysis: The mass deposited is $m = \text{Zit} = \frac{1}{F}$ Eit where I is current, Z is electrochemical equivalent, E is chemical equivalent and F = 96485C/g is Faraday constant.