JEE MATHS RELATIONS AND FUNCTIONS

301. If $2f(x^2) + 3f\left(\frac{1}{x^2}\right) = x^2 - 1$ for all $x \in \mathbb{R} - \{0\}$, then $f(x^4)$ is a) $\frac{(1-x^4)(2x^4+3)}{5x^4}$ b) $\frac{(1+x^4)(2x^4-3)}{5x^4}$ c) $\frac{(1-x^4)(2x^4-3)}{5x^4}$ d) None of these 302. The domain of definition of the function $f(x) = \sqrt{7-w}P_{w-w}$ is b) {3, 4, 5, 6, 7} d) None of these a) [3,7] c) **[3, 4, 5]** 303. Let f(x) = x and g(x) = |x| for all $x \in R$. Then, the function $\phi(x)$ satisfying $\{\phi(x) - f(x)\}^2 + \{\phi(x) - g(x)\}^2 = 0$, is a) $\phi(x) = x, x \in [0, \infty)$ b) $\phi(x) = x, x \in \mathbb{R}$ c) $\phi(x) = -x, x \in (-\infty, 0]$ d) $\phi(x) = x + |x|, x \in \mathbb{R}$ 304. The value of the function $f(x) = 3 \sin\left(\sqrt{\frac{\pi^2}{16} - x^2}\right)$ lies in the interval b) <mark>[0,3/√2]</mark> a) $[-\pi/4,\pi/4]$ d) None of these c) (-3,3) 305. The period of the function $f(x) = |\sin x| + |\cos x|$ is c) 27 d) None of these a) 🔐 b) $\pi/2$ 306. If $f(x) = (ax^2 + b)^2$, then the function g such that f(g(x)) = g(f(x)) is given by a) $g(x) = \left(\frac{b - x^{1/2}}{a}\right)^{1/2}$ b) $g(x) = \frac{1}{(ax^2 + b)^2}$ c) $g(x) = (ax^2 + b)^{1/2}$ d) $g(x) = \left(\frac{x^{1/2} - b}{a}\right)^{1/2}$ 307. Let *R* be the real line. Consider the following subsets of the plane $\mathbb{R} \times \mathbb{R}$ $S = \{(x, y): y = x + 1 \text{ and } 0 < x < 2\}$ $T = \{(x, y): x - y \text{ is an integer}\}$ Which of the following is true? a) T is an equivalent relation on R but S is not b) Neither *S* nor *T* is an equivalence relation on *R* c) Both *S* and *T* are equivalence relations on *R* d) S is an equivalence relations on R and T is not 308. Let A = [-1, 1] and $f: A \to A$ be defined as f(x) = x |x| for all $x \in A$, then f(x) is a) Many-one into function b) One-one into function d) One-one onto function c) Many-one onto function 309. If $f(x) = \frac{1-x}{1+x}$, $x \neq 0$, -1 and $\alpha = f(f(x)) + f(f(\frac{1}{x}))$, then b) a < -2 a) 🔐 ≽ 🤰 c) $|\alpha| > 2$ d) 🔐 🗖 🤰

310. Let R and S be two non-void relations on a set A . Which of the following statements is false?						
	a) RandS are transitive implies $R \cap S$ is transitive.					
	b) RandS are transitive implies $R \cup S$ is transitive.					
	c) RandS are symmetric implies $R \cup S$ is symmetric.					
	d) RandS are reflexive implies $R \cap S$ is reflexive.					
311	11. $A = \{1, 2, 3, 4\}, B\{1, 2, 3, 4, 5, 6\}$ are two sets, and function $f: A \rightarrow B$ is defined by $f(x) = x + 2 \forall x \in A$, then the function f is					
	a) Bijective	b) Onto	c) One-one	d) Many-one		
312	Let $f(x) = x + 1$ and $\phi(x)$) = x - 2. Then the values of	f x satisfying $ f(x) + \phi(x) $	$= f(x) + \phi(x) $ are :		
	a) (-∞,1]	b) <mark>[2,∞)</mark>	^{c)} (-∞, -2]	d) [1,∞)		
313	• The domain of the functio	$f(x) = \frac{\sin^{-4}(8-\pi)}{\log_{2}(x -2)'}$ is				
	a) [2,4]	^{b)} (2, 3) ∪ (3, 4]	c) [2,3)	d) (-∞, -3) ∪ [2,∞)		
314	If $f(x) = \frac{1}{\sqrt{ x -x }}$ then, dom	nain of f(x) is				
	a) (-∞,0)	b) (-∞,2)	c) (-∞,∞)	d) None of the above		
315	315. The domain of definition of					
	$f(x) = \log_{10} \{ (\log_{10} x)^2 - \dots \}$	$5 \log_{10} x + 6$, is		1) (1)		
	$a_{J}(0,10^2)$	^{DJ} (10 ⁸ ,∞)	$(10^2, 10^8)$	⁽¹⁾ $(0, 10^2) \cup (10^3, \infty)$		
316	If a function $f(x)$ satisfies	the condition				
	$f\left(x+\frac{1}{x}\right) = x^2 + \frac{1}{x^2}, x \neq$	0, then $f(x)$ equals				
	a) 🗶 🗕 🗕 a for all 🗶 🗰 🛿					
	b) $x^2 - 2$ for all x satisfying $ x \ge 2$					
	c) $x^2 - 2$ for all x satisfying	x < 2				
	d) None of these					
^{317.} The period of the function $f(x) = \sin\left(\frac{2x+3}{x-3}\right)$, is						
	a) 2 π	b) 6 m	c) 6 72	d) None of these		
318. $f: R \to R$ is a function defined by $f(x) = 10 x - 7$. If $g = f^{-1}$, then $g(x) =$						
	a) <u>1</u>	b) <u>1</u>	c) $\frac{x+7}{x+7}$	d) $\frac{x-7}{1}$		
10 x - 7 $10 x + 7$ 10 10 10 10 $319. If f(x) = [x - 2], where [x] denotes the greatest integer less than or equal to x, then f(2, 5) is equal to$						
	a) <u>1</u>	b) 0	c) 1	d) Does not exist		
320	2 . The domain of definition (of				

$f(x) = \sqrt{\log_{10}(\log_{10} x) - \log_{10}(4 - \log_{10} x) - \log_{10} 3)}$ is				
a) (10 ³ ,10 ⁴)	^{b)} [10 ⁸ ,10 ⁴]	^{c)} [10 ⁸ ,10 ⁴)	^{d)} (10 ³ ,10 ⁴]	
321. The value of $n \in \mathbb{Z}$ (the set of integers) for which the function $f(x) = \sin \frac{\sin n \pi}{\sin \left(\frac{\pi}{2}\right)}$ has 4π as its period is				
a) 2	b) 3	c) 5	d) 4	
322. The inverse of the function $f: R \to R$ given by $f(x) = \log_a(x + \sqrt{x^2 + 1})$ $(a > 0, a \neq 1)$, is				
a) $\frac{1}{2}(a^{n}+a^{-n})$	b) $\frac{1}{2}(a^{n}-a^{-n})$	c) $\frac{1}{2} \left(\frac{a^{x} + a^{-x}}{a^{x} - a^{-x}} \right)$	d) Not defined	
323. The domain of definition of the function				
$f(x) = x \cdot \frac{1+2(x+4)}{2-(x+4)^0}$	$\frac{1}{8}$ + (x + 4) ^{0.8} + 4(x + 4) ^{0.8}	⁸ is		
a) _R	b) (-4,4)	c) _R +	d) $(-4, 0) \cup (0, \infty)$	
324. If $f(x) = \frac{a_N}{n+1}, x \neq -1$, fo	r what value of α is $f[f(x)]$	- x ?		
a) ⁄2	^{b)} -√2	c) 1	d) -1	
325. The period of the functio	$n f(x) = \csc^2 3x + \cot 4x$	is		
a) 11 3	b) #	c) $\frac{\pi}{6}$	d) ₁₁	
326. The domain of the definit	tion of the function $f(x) = \sqrt{1}$	$\sqrt{1 + \log_e(1 - x)}$ is		
a) _∞ < x ≤ 0	b) $-\infty < x \leq \frac{e-1}{e}$	c) _∞ < x ≤ 1	d) <u>x ≥ 1 − ø</u>	
327. The range of the function $\sin(\sin^{-1}x + \cos^{-1}x), x \le 1$ is				
a) [-1, 1]	b) [1, -1]	c) {0}	d) {1}	
328. The range of $f(x) = \cos x$	$x - \sin x$ is			
a) [-1, 1]	b) (-1, 2)	c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	^{d)} [−√2,√2]	
329. The range of function $f(x) = x^2 + \frac{1}{x^2 + 1}$				
a) [1,∞)	b) <mark>[2,∞)</mark>	c) $\left[\frac{3}{2},\infty\right)$	d) None of these	
330. If <i>n</i> is an integer, the domain of the function $\sqrt{\sin 2x}$ is				
a) $\left[n\pi - \frac{\pi}{2}, n\pi\right]$	b) $\left[n\pi, n\pi + \frac{\pi}{4}\right]$	c) $[(2n-1)\pi, 2n\pi]$	d) $[2n\pi, (2n + 1)\pi]$	
331. If $f \cdot R \rightarrow R$ is defined by $f(x) = x - [x] - \frac{1}{2}$ for all $x \in R$, where [x] denotes the greatest integer function,				
then $\left\{ x \in R : f(x) = \frac{1}{2} \right\}$ i	s equal to			
a) _Z	b) _N	c) _ф	d) _R	
332. Suppose $f: [-2, 2] \rightarrow R$ is defined by				
$f(x) = \begin{cases} -1, \text{ for } -2 \le x \le 0\\ x - 1 \text{ for } 0 \le x \le 2 \end{cases} \text{ then } \{x \in [-2, 2] : x \le 0 \text{ and } f(x) = x\} \text{ is equal to} \end{cases}$				

	a) (-1)	b) {0}	c) $\left\{-\frac{1}{2}\right\}$	d) _{\$\Phi\$}	
333. If $f: R \to R$ is defined by $f(x) = \sin x$ and $g: (1, \infty) \to R$ is defined by $g(x) = \sqrt{x^2 - 1}$, then $gof(x)$ is					
	a) $\sqrt{\sin(x^2-1)}$	b) $\sin\sqrt{x^2-1}$	c) cos x	d) Not defined	
334	Let R and C denote the set	of real numbers and compl	ex numbers respectively. Th	ne function $f: C \rightarrow R$ defined	
	by $f(z) = z $ is		h) Onto		
	c) Bijective		d) Neither one to one nor	onto	
335	If $f(x) = \frac{n-1}{2}$ then $f(2x)$	ic			
555	$f(x) = \frac{f(x)}{x+1}$, then $f(2x)$	35 + 3f(r) + 1	f(r) + 3	r f(r) + 8	
	a) $\frac{f(x) + 1}{f(x) + 3}$	f(x) + 3	f(x) + 1	(a) $\frac{f(x) + y}{3f(x) + 1}$	
336	. The range of the function	$f(x) = \tan \sqrt{\frac{\pi^2}{9} - x^2}$ is			
	a) [0, 3]	b) [0, \3]	c) (-∞,∞)	d) None of these	
337	. The domain of the function	$n f(x) = \csc^{-1}[\sin x] \text{ in } [$	$[0,2\pi]$, where $[\cdot]$ denotes the	e greatest integer function, is	
	a) $[0, \pi/2) \cup (\pi, 3\pi/2]$	b) $(\pi, 2\pi) \cup {\pi/2}$	c) (0, π] ∪ {3 π/2}	d) $(\pi/2,\pi) \cup (3\pi/2,2\pi)$	
338	Let R be the relation on th	e set R of all real numbers d	lefined by aRb if $ a - b \leq 1$, then <i>R</i> is	
	a) Reflexive and symmetric		b) Symmetric only		
	c) Transitive only		d) Anti-symmetric only		
339	339. The domain of the function $f(x) = \log_e(x - [x])$ is				
	a) _R	b) R – Z	c) (0,+∞)	d) _Z	
340	If $f:[0,\infty] \to [0,\infty]$ and $f($	$(x) = \frac{N}{1+N}$, then f is			
	a) One-one and onto		b) One-one but not onto		
	c) Onto but not one-one		d) Neither one-one nor onto		
341. The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3 - 1$ is					
	a) A one-one function		b) An onto function		
	c) A bijection		d) Neither one-one nor on	ito	
^{342.} Let [x] denote the greatest integer $\leq x$. If $f(x) = [x]$ and $g(x) = x $, then the value of $f\left(g\left(\frac{s}{s}\right)\right) - g\left(f\left(-\frac{s}{s}\right)\right)$					
	is a) 2	b) -2	c) 1	d) -1	
^{343.} The domain of the function $f(x) = \frac{\cos^{-1} x}{ x }$ is					
	a) [−1,0) ∪ {1}	b) [-1, 1]	c) [-1, 1)	d) None of these	

344. The set of values of x for which of the function $f(x) = \frac{1}{x} + 2^{\sin^{-1}x} + \frac{1}{\sqrt{x-2}}$ exists is b) R - {0} c) 🔥 d) None of these a) 🧖 345. If f(x) satisfies the relation $2f(x) + f(1 - x) = x^2$ for all real x, then f(x) is a) $\frac{x^2 + 2x - 1}{6}$ b) $\frac{x^2 + 2x - 1}{3}$ c) $\frac{x^2 + 4x - 1}{3}$ d) $\frac{x^2 - 3x + 1}{6}$ 346. If the function f(x) is defined by f(x) = a + bx and $f^r = fff$ (repeated r times), then $f^r(x)$ is equal to d) $a\left(\frac{b^r-1}{b-1}\right)+b^rx$ a) $a + b^r x$ c) $ar + bx^r$ b) ar + hr x 347. If $f(x) = \frac{x-1}{x+1}$ then f(2x) is a) $\frac{f(x)+1}{f(x)+3}$ b) $\frac{3f(x)+1}{f(x)+3}$ c) $\frac{f(x)+3}{f(x)+1}$ d) $\frac{f(x) + 3}{3f(x) + 1}$ 348. If f(x) is an odd periodic function with period 2, then f(4) equals a) () b) 2 c) 4 d) -4 349. The domain of definition of $f(x) = \int \log_{0.4} \left(\frac{x-1}{x+5} \right) \times \frac{1}{x^2 - 36}$, is a) $(-\infty, 0) - \{-6\}$ b) $(0, \infty) - \{1, 6\}$ c) $(1, \infty) - \{6\}$ d) [1.∞) – {6} 350. The domain of the function $f(x) = \log_2(\log_3(\log_4 x))$ is b) <mark>(4, ∞)</mark> a) (-00,4) c) (0,4) d) $(1, \infty)$ **ANSWERS** 302) c 301) a 303) a 304) b 305) b 306) d 307) a 308) d 310) b 309) c 311) С 312) b 315) d 313) b 314) a 316) b 317) c 318) c 319) 320) c b 321) а 322) b 323) d 324) d 325) d 326) b 327) d 328) d 329) а 330) b 331) С 332) c 333) d 334) d 335) b 336) b 337) b 338) 339) b 340) b а 342) 341) С d 343) a 344) c 345) b 346) d 347) b 348) a 349) c 350) b

301

Given, $2f(x^2) + 3f\left(\frac{1}{x^2}\right) = x^2 - 1$...(i)

(a)

Replacing *x* by $\frac{1}{x}$, we get

 $2f\left(\frac{1}{x^2}\right) + 3f(x^2) = \frac{1}{x^2} - 1$...(ii)

On multiplying Eq. (i) by 2, Eq. (ii) by 3 and subtracting Eq. (i) from Eq. (ii), we get

$$5f(x^2) = \frac{3}{x^2} - 1 - 2x^2$$

$$\Rightarrow \qquad f(x^2) = \frac{1}{5x^2}(3 - x^2 - 2x^4)$$

$$\Rightarrow \qquad f(x^4) = \frac{1}{5x^4}(3 - x^4 - 2x^8) \qquad [\text{Replacing } x \text{ by } x^2]$$

$$= \frac{(1 - x^4)(2x^4 + 3)}{5x^4}$$

302

(c)

The function $f(x) = \sqrt[7-n]{P_{n-3}}$ is defined only if x is an integer satisfying the following inequalities: (1)7 - x ≥ 0 (11)x - 3 ≥ 0 (111)7 - x $\ge x - 3$ Now.

Now,

$$\begin{array}{c}
7 - x \ge 0 \Rightarrow x \le 7 \\
x - 3 \ge 0 \Rightarrow x \ge 3 \\
7 - x \ge x - 3 \Rightarrow x \le 5
\end{array}$$
Hence, the required domain is $\{3, 4, 5\}$

303

We have,

(a)

f(x) = x, g(x) = |x| for all $x \in R$ and $\phi(x)$ satisfies the relation

$$[\phi(x) - f(x)]^2 + [\phi(x) - g(x)]^2 = 0$$

$$\Rightarrow \phi(x) - f(x) = 0$$
 and $\phi(x) - g(x) = 0$

$$\Rightarrow \phi(x) = f(x)$$
 and $\phi(x) = g(x)$

$$\Rightarrow f(x) = g(x) = \phi(x)$$

But, f(x) = g(x) = x, for all $x \ge 0$ [$\forall |x| = x$ for all $x \ge 0$]

$$\land \phi(x) = x \text{ for all } x \in [0, \infty)$$

304

(b)

We observe that $f(x) = 3 \sin\left(\sqrt{\frac{\pi^2}{16} - x^2}\right)$ exists for

$$\frac{\pi^2}{16} - x^2 \ge 0 \Rightarrow -\frac{\pi}{4} \le x \le \frac{\pi}{4}$$

The least value of $\frac{\pi^2}{16} - x^2$ is 0 for $x = \pm \frac{\pi}{4}$ and the greatest value is $\frac{\pi^2}{16}$ for x = 0. Therefore, the greatest value of f(x) occurs at x = 0 and the least value occurs at $x = \pm \pi/4$. Thus, greatest and least values of f(x) are

$$f(0) = 3\sin\left(\sqrt{\frac{\pi^2}{16}}\right) = 3\sin\frac{\pi}{4} = \frac{3}{\sqrt{2}}$$
 and, $f\left(\frac{\pi}{4}\right) = 3\sin 0 = 0$

Hence, the value of f(x) lie in the interval $[0, 3/\sqrt{2}]$ ALITER For $x \in [-\pi/4, \pi/4] = Dom(f)$, we find that $\sqrt{\frac{\pi^2}{16} - x^2} \in [0, \pi/4]$ Since $\sin x$ is an increasing function on $[0, \pi/4]$

$$sin x ≤ sin \sqrt{\frac{\pi^2}{16} - x^2} ≤ sin \pi/4$$

$$⇒ 0 ≤ 3 sin \sqrt{\frac{\pi^2}{16} - x^2} ≤ \frac{3}{\sqrt{2}} \Rightarrow 0 ≤ f(x) ≤ \frac{3}{\sqrt{2}}$$
(b)

305

$$f\left(\frac{\pi}{2} + x\right) = \left|\sin\left(\frac{\pi}{2} + x\right)\right| + \left|\cos\left(\frac{\pi}{2} + x\right)\right|$$

 $= |\cos x| + |\sin x| \text{ for all } x.$

Hence, f(x) is periodic with period $\frac{\pi}{2}$.

306

307

(d)

It can be easily checked that $g(x) = \left(\frac{x^{1/2}-b}{a}\right)^{1/2}$ satisfies the relation $f \circ g(x) = g \circ f(x)$ (a)

Since, (1, 2) ∈ S but (2, 1) ∉ S

: Sis not symmetric.

Hence, *S* is not an equivalent relation.

Given, $T = \{(x, y) : (x - y) \in I\}$

Now, $xTx \rightarrow x - x = 0 \in I$, it is reflexive relation

Again, $xTy \Rightarrow (x - y) \in I$

 \rightarrow *y* – *x* \in *I* \rightarrow *yTx*it is symmetric relation.

Let xTy and yTz

 $x - y = I_1$ and $y - z = I_2$

Now, $x - z = (x - y) + (y - z) = I_1 + I_2 \in I$

 $\Rightarrow x - z \in I$

→ xTz

(d)

• Tis transitive.

Hence, **T** is an equivalent relation.

308

$$f(x) = x|x| = \begin{cases} x^2, & x \ge 0\\ -x^2, & x < 0 \end{cases}$$

Since, $-1 \le x \le 1$, therefore $-1 \le f(x) \le 1$

- Function is one-one onto.

309

We have,

(c)

$$f(x) = \frac{1-x}{1+x}$$

$$\Rightarrow f(f(x)) = f\left(\frac{1-x}{1+x}\right) = \frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}} = x$$

Again,

$$f(x) = \frac{1-x}{1+x}$$

$$\Rightarrow f\left(\frac{1}{x}\right) = \frac{1-\frac{1}{x}}{1+\frac{1}{x}} = \frac{x-1}{x+1}$$

$$\Rightarrow f\left(f\left(\frac{1}{x}\right)\right) = f\left(\frac{x-1}{x+1}\right) = \frac{1-\frac{x-1}{x+1}}{1+\frac{x-1}{x+1}} = \frac{1}{x}$$

$$\therefore \alpha = f(f(x)) + f\left(f\left(\frac{1}{x}\right)\right) = x + \frac{1}{x}$$

$$\Rightarrow |\alpha| = \left|x + \frac{1}{x}\right| \ge 2$$
(b)

Let A = {1, 2, 3}

Let two transitive relations on the set **A** are

 $R = \{(1, 1), (1, 2)\}$

And $S = \{(2, 2), (2, 3)\}$

Now, $R \cup S = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$

Here, $(1, 2), (2, 3) \in \mathbb{R} \cup S \Rightarrow (1, 3) \notin \mathbb{R} \cup S$

▲ **R U S** is not transitive.

311 **(c)**

310

f(1) = 3, f(2) = 4, f(3) = 5, f(4) = 6

→ 1 ∈ B, 2 ∈ B do not have any pre-image in A

 \Rightarrow *f* is one-one and into

312 **(b)**

We observe that $|f(x) + \phi(x)| = |f(x)| + |\phi(x)| \text{ is true, if}$ $f(x) \ge 0 \text{ and } \phi(x) \ge 0$ OR $f(x) < 0 \text{ and } \phi(x) < 0$ $\Rightarrow (x > -1 \text{ and } x > 2) \text{ or } (x < -1 \text{ and } x < 2)$ $\Rightarrow x \in (2, \infty) \cup (-\infty, -1)$ (b)

We have,
$$f(x) = \frac{\sin^{-1}(3-x)}{\log_e(|x|-2)}$$

 $\sin^{-1}(3-x)$ is defined for all x satisfying
 $-1 \le 3 - x \le 1 \Rightarrow -4 \le -x \le -2 \Rightarrow x \in [2,4]$
 $\log_e(|x|-2)$ is defined for all x satisfying
 $|x|-2 > 0 \Rightarrow x \in (-\infty, -2) \cup (2,\infty)$
Also, $\log_e(|x|-2) = 0$ when $|x|-2 = 1$ i.e., $x = \pm 3$
Hence, domain of $f = (2,3) \cup (3,4]$

314	(a)
	f(x) is defined
	When $ x > x$
	$\Rightarrow x < -x, x > x$
	→ $2x < 0, (x > x \text{ is not possible})$
	$\Rightarrow x \leq 0$
	Hence domain of $f(x)$ is $(-\infty, 0)$.
315	(d)
	We have, $f(x) = \log_{10}\{(\log_{10} x)^2 - 5(\log_{10} x) + 6\}$ Clearly, $f(x)$ assumes real values, if $(\log_{10} x)^2 - 5\log_{10} x + 6 > 0$ and $x > 0$ $\Rightarrow (\log_{10} x - 2)(\log_{10} - 3) > 0$ and $x > 0$ $\Rightarrow (\log_{10} x < 2 \text{ or } \log_{10} x > 3) \text{ and } x > 0$ $\Rightarrow (x < 10^2 \text{ or } x > 10^2) \text{ and } x > 0 \Rightarrow x \in (0.10^2) \sqcup (10^3 \text{ co})$
316	(b)
	We have, $f\left(x+\frac{1}{x}\right) = x^{2} + \frac{1}{x^{2}} = \left(x+\frac{1}{x}\right)^{2} - 2$ $\Rightarrow f(y) = y^{2} - 2, \text{ where } y = x + \frac{1}{x}$ Now, $x \ge 0 \Rightarrow y = x + \frac{1}{x} \ge 2 \text{ and, } x < 0 \Rightarrow y = x + \frac{1}{x} \le -2$ Thus, $f(y) = y^{2} - 2$ for all y satisfying $ y \ge 2$
317	(c)
	Since $\sin x$ is a periodic function with period 2π and $f(x) = \sin\left(\frac{2x+3}{6\pi}\right) = \sin\left(\frac{x}{3\pi} + \frac{1}{2\pi}\right)$ $f(x)$ is periodic with period $= \frac{2\pi}{1/8\pi} = 6\pi^2$
318	(c)
	Let $f(x) = y$. Then,
	$10 x - 7 = y \Rightarrow x = \frac{y + 7}{10} \Rightarrow f^{-1}(y) = \frac{y + 7}{10}$
	Hence, $f^{-1}(x) = \frac{x+7}{10}$

319 (b)

$$f(2.5) = [2.5 - 2] = [0.5] = 0$$
320 (c)
We have,

$$f(x) = \sqrt{\log_{10}(\log_{10} x) - \log_{10}(4 - \log_{10} x) - \log_{10} 3}$$
Clearly, $f(x)$ assumes real values, if

$$\log_{10}(\log_{10} x) - \log_{10}(4 - \log_{10} x) - \log_{10} 3 \ge 0$$

$$= \log_{10} \left\{ \frac{\log_{10} x}{5(4 - \log_{10} x)} \right\} \ge 0$$

$$= \frac{\log_{10} x}{5(4 - \log_{10} x)} \ge 1$$

$$= \frac{4\log_{10} x - 12}{5(4 - \log_{10} x)} \ge 0$$

$$= \frac{\log_{10} x - 3}{\log_{10} x - 4} \le 0$$

$$= 3 \le \log_{10} x < 4 \Rightarrow 10^3 \le x < 10^4 \Rightarrow x \in [10^3, 10^4)$$
Hence, domain of $f = [10^3, 10^4)$
Hence, domain of $f = [10^3, 10^4]$
321 (a)
We observe that the periods of $\sin x$ and $\sin \frac{\pi}{n} \arg \frac{2\pi}{|n|} \operatorname{and} 2|n|\pi$ respectively
Therefore, $f(x)$ is periodic with period $2|n|\pi$
But, $f(x)$ has period 4π

$$\approx 2|n|\pi - 4\pi \Rightarrow |n| - 2 \Rightarrow n - \pm 2$$
322 (b)
It can be easily checked that $f: R \to R$ given by $f(x) = \log_n(x + \sqrt{x^2 + 1})$ is a bijection
Now, $f(f^{-4}(x)) = x$

$$\log_{a} \left(f^{-1}(x) + \sqrt{[f^{-1}(x)]^{2} + 1} \right) = x$$

$$\Rightarrow f^{-1}(x) + \sqrt{[f^{-1}(x)]^{2} + 1} = a^{n} \qquad \dots(i)$$

$$\Rightarrow \frac{1}{f^{-1}(x) + \sqrt{[f^{-1}(x)]^{2} + 1}} = a^{-n}$$

$$\Rightarrow -f^{-1}(x) + \sqrt{[f^{-1}(x)]^{2} + 1} = a^{-n} \qquad \dots(ii)$$
Subtracting (ii) from (i), we get
$$2f^{-1}(x) = a^{n} - a^{-n}$$

$$\Rightarrow f^{-1}(x) = \frac{1}{2}(a^{n} - a^{-n})$$

323 **(d)**

We have,

$$f(x) = x \frac{1 + \frac{2}{\sqrt{x+4}}}{2 - \sqrt{x+4}} + \sqrt{x+4} + 4\sqrt{x+4}$$

Clearly, f(x) is defined for x + 4 > 0 and $x \neq 0$ So, Domain of f(x) is $(-4, 0) \cup (0, \infty)$ (d)

324

$$f(f(x)) = f\left(\frac{\alpha x}{x+1}\right)$$

$$= \frac{\alpha \left(\frac{\alpha x}{x+1}\right)}{\left(\frac{\alpha x}{x+1}\right)+1} = \frac{\alpha^2 x}{\alpha x+x+1}$$

$$\Rightarrow \frac{\alpha^2 x}{\alpha x+x+1} = x \qquad [given]$$

$$\Rightarrow \alpha^2 = \alpha x + x + 1$$

$$\Rightarrow \alpha^2 - 1 = (\alpha + 1)x$$

$$\Rightarrow (\alpha + 1)(\alpha - 1 - x) = 0$$

$$\Rightarrow \alpha + 1 = 0 \Rightarrow \alpha = -1 \qquad [x \alpha - 1 - x \Rightarrow 0]$$
(d)
$$f(x) = \csc^2 3x + \cot 4x$$
Period of cosec² 3x is $\frac{\pi}{3}$ and cot 4x is $\frac{\pi}{4}$.
∴ Period of f(x) = LCM of $\left\{\frac{\pi}{3}$ and $\frac{\pi}{4}\right\}$

$$= \frac{LCM of(\pi, \pi)}{HCF of(3, 4)} = \frac{\pi}{1} = \pi$$

326

(b)

Given,
$$f(x) = \sqrt{1 + \log_e(1 - x)}$$

For domain, $(1 - x) > 0$ and $\log_e(1 - x) \ge -1$
 $\Rightarrow x < 1$ and $1 - x \ge e^{-1}$
 $\Rightarrow x < 1$ and $x \le 1 - \frac{1}{e}$
 $\Rightarrow -\infty < x \le \frac{e - 1}{e}$

327 (d)

$$\sin(\sin^{-1}x + \cos^{-1}x) = \sin(\frac{\pi}{2}) = 1$$

 \therefore Range of $\sin(\sin^{-1}x + \cos^{-1}x)$ is 1.
328 (d)
Given, $f(x) = \cos x - \sin x$
 $= \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos x - \frac{1}{\sqrt{2}} \sin x\right)$
 $= \sqrt{2} \cos(\frac{\pi}{2} + x)$
Since, $-1 \le \cos x \le 1 \Rightarrow -1 \le \cos(\frac{\pi}{4} + x) \le 1$
 $\Rightarrow -\sqrt{2} \le \sqrt{2} \cos(\frac{\pi}{4} + x) \le \sqrt{2}$
 \therefore Range is $[-\sqrt{2}, \sqrt{2}]$
329 (a)
Given, $f(x) = x^2 + \frac{1}{x^2 + 1}$
 $= (x^2 + 1) - \left(\frac{x^2}{x^2 + 1}\right)$
 $= 1 + x^2 \left(1 - \frac{1}{x^2 + 1}\right) \ge 1, \forall x \in R$
Hence, range of $f(x)$ is $[1, \infty)$.
330 (b)
Let $y = \sqrt{\sin 2x} \Rightarrow 0 \le \sin 2x \le 1$.
 $\Rightarrow 0 \le 2x \le \frac{\pi}{2}$
 $\Rightarrow 0 \le x \le \frac{\pi}{4}$
 $\Rightarrow x \in [n\pi, n\pi + \frac{\pi}{4}]$
331 (c)
We have, $f(x) = x - [x] - \frac{1}{2}$

$$f(x) = \frac{1}{2} \Rightarrow x - [x] = 1$$

But, for any $x \in R, 0 \le x - [x] < 1$
 $\Rightarrow x - [x] \neq 1$ for any $x \in R$
Hence, $\left\{x \in R : f(x) = \frac{1}{2}\right\} = \phi$
332 (c)
Since, $x \in [-2, 2], x \le 0$ and $f(|x|) = x$
For $-2 \le x \le 0$
 $f(-x) = x \Rightarrow \le (-x) - 1 = x \Rightarrow x = -\frac{1}{2}$
333 (d)
Given, $f(x) = \sin x$
And $g(x) = \sqrt{x^2 - 1}$
 \Rightarrow Range of $f = [-1, 1] \notin$ domain of $g = (1, \infty)$
 $\Rightarrow gof$ is not defined.
334 (d)

Given, $f: C \rightarrow R$ such that f(z) = |z|

We know modulus of z and \overline{z} have same values, so f(z) has many one.

Also, 😰 is always non-negative real numbers, so it is not onto function.

We have,

(b)

$$f(x) = \frac{x-1}{x+1}$$

$$\Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{2x}{-2} [\text{Applying componendo-dividendo}]$$

$$\Rightarrow x = \frac{f(x)+1}{1-f(x)}$$

$$\Rightarrow f(2x) = \frac{2x-1}{2x+1} = \frac{2\left\{\frac{f(x)+1}{1-f(x)}\right\} - 1}{2\left\{\frac{f(x)+1}{1-f(x)}\right\} + 1} = \frac{3f(x)+1}{f(x)+3}$$
(b)

Given,
$$f(x) = \tan \sqrt{\frac{\pi}{9} - x^2}$$

For f(x) to be defined $\frac{\pi^2}{9} - x^2 \ge 0$

 $\Rightarrow \quad x^2 \le \frac{\pi^2}{9} \Rightarrow -\frac{\pi}{3} \le 3 \le \frac{\pi}{3}$

 $\therefore \text{ Domain of } f = \left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$

The greatest value of $f(x) = \tan \sqrt{\frac{\pi^2}{9}} - 0$, when x = 0

And the least value of $f(x) = \tan \sqrt{\frac{\pi^2}{9} - \frac{\pi^2}{9}}$, when $x = \frac{\pi}{3}$

... The greatest value of $f(x) = \sqrt{3}$ and the least value of f(x) = 0

$$\therefore$$
 Range of $f = [0, \sqrt{3}]$

337

We have,

(b)

$$[\sin x] = \begin{cases} 0, 0 \le x \le \pi/2 \\ 1, x = \pi/2 \\ 0, \pi/2 \le x \le \pi \\ -1, \pi \le x \le 2\pi \\ 0, x = \pi, 2\pi \end{cases}$$

And, cosec⁻¹x is defined for $x \in (-\infty, -] \cup [1, \infty)$

 $f(x) = \csc^{-1}[\sin x]$ is defined for $x = \frac{\pi}{2}$ and $x \in (\pi, 2\pi)$

Hence, domain of $\csc^{-1}[\sin x]$ is $(\pi, 2\pi) \cup \left\{\frac{\pi}{2}\right\}$

338

aRa if $|a - a| = 0 \le 1$, which is true.

It is reflexive.

Now, **aRb**,

(a)

```
|a-b| \le 1 \Rightarrow |b-a| \le 1
```

```
⇒ aRb ⇒ bRa
```

: It is symmetric.

339

Given

(b)

 $f(x) = \log_e(x - [x]) = \log_e\{x\}$

NEET / JEE MCQS PDF SALES நீட் தமிழ் **ENGLISH JEE MATHS** மீடியம் MEDIUM MAIN & இயற்பியல் PHYSICS **ADVANCE** வேகியல் **CHEMISTRY** COST உயிரியல் BIOLOGY **RS.1000** 17000+ 26000+ MCQS **NEET 10** MCQS MOCK COST COST TESTS COST **RS.1500 RS.2500 RS.500** WHATSAPP - 8056206308

When x is an integer, then the function is not defined.

... Domain of the function $\mathbf{R} - \mathbf{Z}$.

340

(b)

Here, $f: [0, \infty] \rightarrow [0, \infty)$ is, domain is $[0, \infty)$ and codomain is $[0, \infty)$.

For one-one $f(x) = \frac{N}{1+N}$

$$\Rightarrow \qquad f'(x) = \frac{1}{(1+x)^2} > 0, \forall x \in [0,\infty)$$

• f(x) is increasing in its domain. Thus, f(x) is one-one in its domain.

For onto (we find range)

$$f(x) = \frac{x}{1+x} ie, y = \frac{x}{1+x} \Rightarrow y + yx = x$$
$$\Rightarrow x = \frac{y}{1-y} \Rightarrow \frac{y}{1-y} \ge 0 \text{ as } x \ge 0 \therefore 0 \le y \ne 1$$

l€, Range ≠ Codomain

• f(x) is one-one but not onto.

Given, $f(x) = x^3 - 1$

Let $x_1, x_2 \in \mathbb{R}$

(c)

Now, $f(x_1) = f(x_2)$

- $\Rightarrow x_1^3 1 = x_2^3 1$
- $\Rightarrow x_1^3 = x_2^3$

 $\rightarrow x_1 = x_2$

• f(x) is one-one. Also, it is onto as range of f = R

Hence, it is a bijection.

342 (d)
Given
$$f(x) = [x]$$
 and $g(x) = |x|$
Now, $f\left(g\left(\frac{8}{3}\right)\right) = f\left(\frac{8}{3}\right) = \left[\frac{8}{3}\right] = 1$
And $g\left(f\left(-\frac{8}{3}\right)\right) = g\left(\left[-\frac{8}{3}\right]\right) = g(-2) = 2$

$$f\left(g\left(\frac{8}{5}\right)\right) - g\left(f\left(-\frac{8}{5}\right)\right) = 1 - 2 = -1$$

343

$$f(x) = \frac{\cos^{-1} x}{[x]}$$

(a)

(c)

(b)

For f(x) to be defined $-1 \le x \le 1$ and $[x] \neq 0 \Rightarrow x \notin [0, 1)$

 $\therefore \text{ Domain of } f(x) \text{ is } [-1, 0] \cup \{1\}.$

344

Let f(x) = g(x) + h(x) + u(x), where

$$g(x) = \frac{1}{x}, h(x) = 2^{\sin^{-1} x}$$
 and $u(x) = \frac{1}{\sqrt{x-2}}$

The domain of g(x) is the set of all real numbers other than zero i.e. $R - \{0\}$

The domain of h(x) is the set [-1, 1] and the domain of u(x) is the set of all reals greater than 2, i.e., $(2, \infty)$

Therefore, domain of $f(x) = R - \{0\} \cap [-1, 1] \cap (2, \infty) = \phi$

345

Given, $2f(x) + f(1 - x) = x^2$...(i)

Replacing x by (1 - x), we get

 $2f(1-x) + f(x) = (1-x)^2$

⇒ $2f(1-x) + f(x) = 1 + x^2 - 2x$...(ii)

On multiplying Eq. (i) by 2 and subtracting from Eq. (ii), we get

$$3f(x) = x^2 + 2x - 1 \Rightarrow f(x) = \frac{x^2 - 2x - 1}{3}$$

346

f(x) = a + bx

(d)

(b)

$$f\{f(x)\} = a + b(a + bx) = a(1 + b)b^2x$$

⇒
$$f[f{f(x)}] = f{a(1+b) + b^2x} = a(1+b+b^2) + b^3x$$

$$f^{r}(x) = a(1 + b + b^{2} + \dots + b^{r-1}) + b^{r}x$$

$$= a\left(\frac{b^r-1}{b-1}\right) + b'x$$

We have,

$$f(x) = \frac{x-1}{x+1}$$

$$\Rightarrow \frac{f(x)+1}{f(x)-1} = \frac{2x}{-2}$$

$$\Rightarrow x = \frac{f(x)+1}{1-f(x)}$$

$$\land f(2x) = \frac{2x-1}{2x+1} = \frac{2\left\{\frac{f(x)+1}{1-f(x)}\right\} - 1}{2\left(\frac{f(x)+1}{1-f(x)}\right) + 1} = \frac{3f(x)+1}{f(x)+3}$$

348

(a)

(c)

Since,
$$f(-x) = -f(x)$$
 and $f(x + 2) = f(x)$
 $f(x) = f(0)$ and $f(-2) = f(-2 + 2) = f(0)$
Now, $f(0) = f(-2) = -f(2) = -f(0)$
 $2f(0) = 0 \implies f(0) = 0$
 $f(4) = f(2) = f(0) = 0$

We observe that $\frac{1}{x^2-36}$ is not defined for $x = \pm 6$ Also, $\sqrt{\log_{0.4}\left(\frac{x-1}{x+6}\right)}$ is a real number, if $0 < \frac{x-1}{x+6} \le 1$ $\Rightarrow 0 < \frac{x-1}{x+5}$ and $\frac{x-1}{x+5} \le 1$ $\Rightarrow (x-1)(x+5) > 0$ and $1 - \frac{6}{x+5} \le 1$ $\Rightarrow (x < -5 \text{ or } x > 1)$ and $-\frac{6}{x+5} \le 0$ $\Rightarrow (x < -5 \text{ or } x > 1)$ and x + 5 > 0 $\Rightarrow (x < -5 \text{ or } x > 1)$ and x + 5 > 0 $\Rightarrow (x < -5 \text{ or } x > 1)$ and x > -5Hence, domain of $f(x) = (1, \infty) - \{6\}$ (b)

Given, $f(x) = \log_2(\log_3(\log_4 x))$

We know, $\log_{\alpha} x$ is defined, if $x \ge 0$

For f(x) to be defined.

 $\log_{3}\log_{4} x > 0$, $\log_{4} x > 0$ and x > 0

- ⇒ $\log_4 x > 3^\circ = 1, x > 4^\circ = 1$ and x > 0
- $\Rightarrow x > 4, x > 1 \text{ and } x > 0$

→ x > 4