VECTOR ALGEBRA

	V LC I OIL I	ILGLDIGI					
501. Let $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$ be such that $ \vec{\mathbf{u}} = 1$, $ \vec{\mathbf{v}} = 2$, $\vec{\mathbf{w}} = 3$. If the projection $\vec{\mathbf{v}}$ along $\vec{\mathbf{u}}$ is equal to that of $\vec{\mathbf{w}}$ along $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$ are perpendicular to each other, then $ \vec{\mathbf{u}} - \vec{\mathbf{v}} + \vec{\mathbf{w}} $ are equals							
a) 2	b) √ 7	c) $\sqrt{14}$	d) 14				
502. Let $\vec{\bf a}$, $\vec{\bf b}$, $\vec{\bf c}$ be the position vectors of the vertices A , B , C respectively of Δ ABC . The vector area of Δ ABC is							
a) $\frac{1}{2} \{ \vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + \vec{\mathbf{b}} \times (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) + \vec{\mathbf{c}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \}$		b) $\frac{1}{2} \{ \vec{\mathbf{a}} \times \vec{\mathbf{b}} + \vec{\mathbf{b}} \times \vec{\mathbf{c}} + \vec{\mathbf{c}} \times \vec{\mathbf{a}} \}$					
c) $\frac{1}{2} \{ \vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}} \}$		d) $\frac{1}{2} (\vec{\mathbf{b}} \cdot \vec{\mathbf{c}}) \vec{\mathbf{a}} + (\vec{\mathbf{c}} \cdot \vec{\mathbf{a}}) \vec{\mathbf{b}} + (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) \vec{\mathbf{c}}$					
503. IF $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$, where \vec{a} , \vec{b} and \vec{c} are any three vectors such that \vec{a} . $\vec{b} \neq 0$, $\vec{b} \cdot \vec{c} \neq 0$, then \vec{a} and \vec{c} are							
		b) Perpendicular					
c) Parallel		d) inclined at an angle of $\frac{\pi}{3}$ between them					
504. A unit vector in the plane of $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and perpendicular to $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ is							
a) $\hat{\mathbf{j}} - \hat{\mathbf{k}}$		c) $\frac{\hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{2}}$					
505. The unit vectors \vec{a} and \vec{b}	505. The unit vectors \vec{a} and \vec{b} are perpendicular, and the unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b} . If						
$\vec{c} = \alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$, then which one of the following is incorrect?							
a) $\alpha \neq \beta$	b) $\gamma^2 = 1 - 2 \alpha^2$	c) $\gamma^2 = -\cos 2\theta$	$d) \beta^2 = \frac{1 + \cos 2 \theta}{2}$				
506. A vector \vec{c} of magnitude	$5\sqrt{6}$ directed along the bise	ctor of the angle between $ar{a}$	$\hat{i} = 7\hat{\imath} - 4\hat{\jmath} - 4\hat{k}$ and				
$\vec{b} = -2\hat{\imath} - \hat{\jmath} + 2\hat{k}, \text{ is}$		_	_				
$a) \pm \frac{5}{3} \left(2\hat{\imath} + 7\hat{\jmath} + \hat{k} \right)$	b) $\pm \frac{3}{5} (\hat{\imath} + 7\hat{\jmath} + 2\hat{k})$	c) $\pm \frac{5}{3} (\hat{\imath} - 2\hat{\jmath} + 7\hat{k})$	$\mathrm{d}) \pm \frac{5}{3} \big(\hat{\imath} - 7\hat{\jmath} + 2\hat{k} \big)$				
507. If the vectors $\vec{\bf a}=2\hat{\bf i}+3\hat{\bf j}+6\hat{\bf k}$ and $\vec{\bf b}$ are collinear and $ \vec{\bf b} =21$, then $\vec{\bf b}$ is equal to							
	$\mathbf{b}) \pm 3(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}})$						
508. A parallelogram is constructed on the vectors $\vec{a} = 3\vec{p} - \vec{q}$, $\vec{b} = \vec{p} + 3\vec{q}$ and also given that $ \vec{p} = \vec{q} = 2$. If the vectors \vec{p} and \vec{q} are inclined at an angle $\pi/3$, then the ratio of the lengths of the diagonals of the parallelogram is							
a) $\sqrt{6}$: $\sqrt{2}$	b) $\sqrt{3}$: $\sqrt{5}$	c) $\sqrt{7}$: $\sqrt{3}$	d) $\sqrt{6}$: $\sqrt{5}$				
509. If $[2\vec{a} + 4\vec{b}\vec{c}\vec{d}] = \lambda[\vec{a}\vec{c}\vec{d}] + \mu[\vec{b}\vec{c}\vec{d}]$, then $\lambda + \mu =$							
a) 6	b) -6	c) 10	d) 8				
510. If A , B and C are the vertices of a triangle whose position vectors are \vec{a} , \vec{b} and \vec{c} respectively G is the centroid of the ΔABC , then $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$ is							
a) 0	b) $\vec{a} + \vec{b} + \vec{c}$	c) $\frac{\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}}{3}$	$d) \frac{\vec{a} - \vec{b} - \vec{c}}{3}$				
511. <i>A</i> , <i>B</i> have position vectors \vec{a} , \vec{b} relative to the origin <i>O</i> and <i>X</i> , <i>Y</i> divide \overrightarrow{AB} internally and externally respectively in the ratio 2 : 1. Then, $\overrightarrow{XY} =$							
	b) $\frac{4}{3}(\vec{a} - \vec{b})$	c) $\frac{5}{6}(\vec{b} - \vec{a})$	d) $\frac{4}{3}(\vec{b}-\vec{a})$				
512. If $\vec{a} = (2,1,-1)$, $\vec{b} = (1,-1,0)$, $\vec{c} = (5-1,1)$, then unit vector parallel to $\vec{a} + \vec{b} - \vec{c}$ but in opposite direction is							
$a) \frac{1}{3} (2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$	$\mathbf{b})\frac{1}{2}(2\hat{\mathbf{i}}-\hat{\mathbf{j}}+2\hat{\mathbf{k}})$	c) $\frac{1}{3}(2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}})$	d) None of these				
513. The number of vectors of unit length perpendicular to the two vectors							
$\vec{a} = (1,1,0) \text{ and } \vec{b} = (0,1,1) \text{ is}$							
a) One 514. A vector which is a linear	b) Two	c) Three	d) Infinite				
Jit A vector which is a linear	combination of the vectors	s 51 + 4 j + 5 K and 61 – / j -	- s k and is perpendicular to				

the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$ is a) $3\hat{\mathbf{i}} - 11\hat{\mathbf{j}} - 8\hat{\mathbf{k}}$ b) $-3\hat{\mathbf{i}} + 11\hat{\mathbf{j}} + 87\hat{\mathbf{k}}$ c) $-9\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$ d) $9\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ 515. If $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ are unit vectors and $\vec{\mathbf{x}} \cdot \vec{\mathbf{y}} = 0$, then a) $ \vec{\mathbf{x}} + \vec{\mathbf{y}} = 1$ b) $ \vec{\mathbf{x}} + \vec{\mathbf{y}} = \sqrt{3}$ c) $ \vec{\mathbf{x}} + \vec{\mathbf{y}} = 2$ d) $ \vec{\mathbf{x}} + \vec{\mathbf{y}} = \sqrt{2}$ 516. If the volume of a parallelopiped with $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$, $\vec{\mathbf{b}} \times \vec{\mathbf{c}}$, $\vec{\mathbf{c}} \times \vec{\mathbf{a}}$ as coterminous edges is 9 cu units, then the volume of the parallelopiped with $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$, $(\vec{\mathbf{b}} \times \vec{\mathbf{c}}) \times (\vec{\mathbf{c}} \times \vec{\mathbf{a}})$, $(\vec{\mathbf{c}} \times \vec{\mathbf{a}}) \times (\vec{\mathbf{a}} \times \vec{\mathbf{b}})$ as coterminous edges is a) 9 cu units b) 729 cu units c) 81 cu units d) 27 cu units 517. The non-zero vectors $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ are related by $\vec{\mathbf{a}} = 8\hat{\mathbf{b}}$ and $\vec{\mathbf{c}} = -7\hat{\mathbf{b}}$. Then, the angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{c}}$ is an $\vec{\mathbf{c}}$ and $\vec{\mathbf{c}} = -7\hat{\mathbf{b}}$. Then, the angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{c}}$ is $\vec{\mathbf{c}} = -7\hat{\mathbf{b}}$. Then, which of the following is $\vec{\mathbf{c}} = -7\hat{\mathbf{c}} = $						
a) $ \vec{\mathbf{x}}+\vec{\mathbf{y}} =1$ b) $ \vec{\mathbf{x}}+\vec{\mathbf{y}} =\sqrt{3}$ c) $ \vec{\mathbf{x}}+\vec{\mathbf{y}} =2$ d) $ \vec{\mathbf{x}}+\vec{\mathbf{y}} =\sqrt{2}$ 516. If the volume of a parallelopiped with $\vec{\mathbf{a}}\times\vec{\mathbf{b}}$, $\vec{\mathbf{b}}\times\vec{\mathbf{c}}$, $\vec{\mathbf{c}}\times\vec{\mathbf{a}}$ as coterminous edges is 9 cu units, then the volume of the parallelopiped with $(\vec{\mathbf{a}}\times\vec{\mathbf{b}})\times(\vec{\mathbf{b}}\times\vec{\mathbf{c}})$, $(\vec{\mathbf{b}}\times\vec{\mathbf{c}})$, $(\vec{\mathbf{b}}\times\vec{\mathbf{c}})\times(\vec{\mathbf{c}}\times\vec{\mathbf{a}})$, $(\vec{\mathbf{c}}\times\vec{\mathbf{a}})\times(\vec{\mathbf{a}}\times\vec{\mathbf{b}})$ as coterminous edges is a) 9 cu units b) 729 cu units c) 81 cu units d) 27 cu units 517. The non-zero vectors $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ are related by $\vec{\mathbf{a}}=8\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}=-7\vec{\mathbf{b}}$. Then, the angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{c}}$ is a) π b) 0 c) π d) π d) π d) π c) π d) π d) π d) π d) π c) π d)						
516. If the volume of a parallelopiped with $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ as coterminous edges is 9 cu units, then the volume of the parallelopiped with $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})$, $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$, $(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})$ as coterminous edges is a) 9 cu units b) 729 cu units c) 81 cu units d) 27 cu units 517. The non-zero vectors \vec{a} , \vec{b} and \vec{c} are related by $\vec{a} = 8\vec{b}$ and $\vec{c} = -7\vec{b}$. Then, the angle between \vec{a} and \vec{c} is a) π 518. For any three non-zero vectors $\vec{r}_1 \vec{r}_2$ and \vec{r}_3 , $ \vec{r}_1 \cdot \vec{r}_1 \cdot \vec{r}_2 \cdot \vec{r}_2 \cdot \vec{r}_1 \cdot \vec{r}_3 $ $ \vec{r}_2 \cdot \vec{r}_1 \cdot \vec{r}_2 \cdot \vec{r}_2 \cdot \vec{r}_2 \cdot \vec{r}_3 $ $ \vec{r}_3 \cdot \vec{r}_1 \cdot \vec{r}_3 \cdot \vec{r}_3 \cdot \vec{r}_3 $ = 0, Then, which of the following is false? a) All the three vectors are parallel to one and the same plane c) This system of equation has a non-trivial solution d) All the three vectors are perpendicular to each other 519. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let \vec{a} , \vec{b} , \vec{c} be three vector such that $\vec{a} \neq \vec{0}$ and $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$, $ \vec{a} = \vec{c} = 1$, $ \vec{b} = 4$ and $ \vec{b} \times \vec{c} = \sqrt{15}$. If						
volume of the parallelopiped with $ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}), (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}), (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) \text{ as coterminous edges is } \\ a) 9 \text{ cu units} \qquad b) 729 \text{ cu units} \qquad c) 81 \text{ cu units} \qquad d) 27 \text{ cu units} $ 517. The non-zero vectors \vec{a} , \vec{b} and \vec{c} are related by $\vec{a} = 8\vec{b}$ and $\vec{c} = -7\vec{b}$. Then, the angle between \vec{a} and \vec{c} is a) π $\qquad b) 0$ $\qquad c) \frac{\pi}{4}$ $\qquad d) \frac{\pi}{2}$ 518. For any three non-zero vectors $\vec{r}_1\vec{r}_2$ and \vec{r}_3 , $\begin{vmatrix} \vec{r}_1 \cdot \vec{r}_1 & \vec{r}_1 \cdot \vec{r}_2 & \vec{r}_1 \cdot \vec{r}_3 \\ \vec{r}_2 \cdot \vec{r}_1 & \vec{r}_2 \cdot \vec{r}_2 & \vec{r}_2 \cdot \vec{r}_3 \\ \vec{r}_3 \cdot \vec{r}_1 & \vec{r}_3 \cdot \vec{r}_2 & \vec{r}_3 \cdot \vec{r}_3 \end{vmatrix} = 0$, Then, which of the following is false? a) All the three vectors are parallel to one and the b) All the three vectors are linearly dependent same plane c) This system of equation has a non-trivial solution d) All the three vectors are perpendicular to each other 519. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let \vec{a} , \vec{b} , \vec{c} be three vector such that $\vec{a} \neq \vec{0}$ and $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$, $ \vec{a} = \vec{c} = 1$, $ \vec{b} = 4$ and $ \vec{b} \times \vec{c} = \sqrt{15}$. If						
$(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}), (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}), (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) \text{ as coterminous edges is}$ a) 9 cu units b) 729 cu units c) 81 cu units d) 27 cu units 517. The non-zero vectors \vec{a} , \vec{b} and \vec{c} are related by $\vec{a} = 8\vec{b}$ and $\vec{c} = -7\vec{b}$. Then, the angle between \vec{a} and \vec{c} is a) π b) 0 c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$ 518. For any three non-zero vectors $\vec{r}_1 \vec{r}_2$ and \vec{r}_3 , $ \vec{r}_1 \cdot \vec{r}_1 \cdot \vec{r}_1 \cdot \vec{r}_2 \cdot \vec{r}_1 \cdot \vec{r}_2 \cdot \vec{r}_3 $ $ \vec{r}_2 \cdot \vec{r}_1 \cdot \vec{r}_2 \cdot \vec{r}_3 \cdot \vec{r}_3 \cdot \vec{r}_3 $ = 0, Then, which of the following is false? a) All the three vectors are parallel to one and the same plane c) This system of equation has a non-trivial solution d) All the three vectors are perpendicular to each other 519. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let \vec{a} , \vec{b} , \vec{c} be three vector such that $\vec{a} \neq \vec{0}$ and $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$, $ \vec{a} = \vec{c} = 1$, $ \vec{b} = 4$ and $ \vec{b} \times \vec{c} = \sqrt{15}$. If						
a) 9 cu units b) 729 cu units c) 81 cu units d) 27 cu units 517 . The non-zero vectors \vec{a} , \vec{b} and \vec{c} are related by $\vec{a} = 8\vec{b}$ and $\vec{c} = -7\vec{b}$. Then, the angle between \vec{a} and \vec{c} is a) π b) 0 c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$ 518. For any three non-zero vectors $\vec{r}_1 \vec{r}_2$ and \vec{r}_3 , $ \vec{r}_1 \cdot \vec{r}_1 \cdot \vec{r}_2 \cdot \vec{r}_1 \cdot \vec{r}_2 \cdot \vec{r}_1 \cdot \vec{r}_3 $ = 0, Then, which of the following is false? a) All the three vectors are parallel to one and the same plane c) This system of equation has a non-trivial solution d) All the three vectors are perpendicular to each other 519. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let \vec{a} , \vec{b} , \vec{c} be three vector such that $\vec{a} \neq \vec{0}$ and $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$, $ \vec{a} = \vec{c} = 1$, $ \vec{b} = 4$ and $ \vec{b} \times \vec{c} = \sqrt{15}$. If						
517. The non-zero vectors \vec{a} , \vec{b} and \vec{c} are related by $\vec{a}=8\vec{b}$ and $\vec{c}=-7\vec{b}$. Then, the angle between \vec{a} and \vec{c} is a) π b) 0 c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$ 518. For any three non-zero vectors $\vec{r}_1\vec{r}_2$ and \vec{r}_3 , $\begin{vmatrix} \vec{r}_1 \cdot \vec{r}_1 & \vec{r}_1 \cdot \vec{r}_2 & \vec{r}_1 \cdot \vec{r}_3 \\ \vec{r}_2 \cdot \vec{r}_1 & \vec{r}_2 \cdot \vec{r}_2 & \vec{r}_2 \cdot \vec{r}_3 \\ \vec{r}_3 \cdot \vec{r}_1 & \vec{r}_3 \cdot \vec{r}_2 & \vec{r}_3 \cdot \vec{r}_3 \end{vmatrix} = 0$, Then, which of the following is false? a) All the three vectors are parallel to one and the b) All the three vectors are linearly dependent same plane c) This system of equation has a non-trivial solution d) All the three vectors are perpendicular to each other 519. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = \hat{\imath} + \hat{\jmath}$, $\vec{c} = \hat{\imath}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let \vec{a} , \vec{b} , \vec{c} be three vector such that $\vec{a} \neq \vec{0}$ and $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$, $ \vec{a} = \vec{c} = 1$, $ \vec{b} = 4$ and $ \vec{b} \times \vec{c} = \sqrt{15}$. If						
a) π b) 0 c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$ 518. For any three non-zero vectors $\vec{r}_1\vec{r}_2$ and \vec{r}_3 , $\begin{vmatrix} \vec{r}_1 \cdot \vec{r}_1 & \vec{r}_1 \cdot \vec{r}_2 & \vec{r}_1 \cdot \vec{r}_3 \\ \vec{r}_2 \cdot \vec{r}_1 & \vec{r}_2 \cdot \vec{r}_2 & \vec{r}_2 \cdot \vec{r}_3 \\ \vec{r}_3 \cdot \vec{r}_1 & \vec{r}_3 \cdot \vec{r}_2 & \vec{r}_3 \cdot \vec{r}_3 \end{vmatrix} = 0$, Then, which of the following is false? a) All the three vectors are parallel to one and the same plane c) This system of equation has a non-trivial solution d) All the three vectors are perpendicular to each other 519. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let \vec{a} , \vec{b} , \vec{c} be three vector such that $\vec{a} \neq \vec{0}$ and $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$, $ \vec{a} = \vec{c} = 1$, $ \vec{b} = 4$ and $ \vec{b} \times \vec{c} = \sqrt{15}$. If						
518. For any three non-zero vectors $\vec{\mathbf{r}}_1\vec{\mathbf{r}}_2$ and $\vec{\mathbf{r}}_3$, $\begin{vmatrix} \vec{\mathbf{r}}_1 \cdot \vec{\mathbf{r}}_1 & \vec{\mathbf{r}}_1 \cdot \vec{\mathbf{r}}_2 & \vec{\mathbf{r}}_1 \cdot \vec{\mathbf{r}}_3 \\ \vec{\mathbf{r}}_2 \cdot \vec{\mathbf{r}}_1 & \vec{\mathbf{r}}_2 \cdot \vec{\mathbf{r}}_2 & \vec{\mathbf{r}}_2 \cdot \vec{\mathbf{r}}_3 \\ \vec{\mathbf{r}}_3 \cdot \vec{\mathbf{r}}_1 & \vec{\mathbf{r}}_3 \cdot \vec{\mathbf{r}}_2 & \vec{\mathbf{r}}_3 \cdot \vec{\mathbf{r}}_3 \end{vmatrix} = 0$, Then, which of the following is false? a) All the three vectors are parallel to one and the same plane c) This system of equation has a non-trivial solution d) All the three vectors are linearly dependent other 519. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$, $\vec{\mathbf{c}} = \hat{\mathbf{i}}$ and $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = \lambda \vec{\mathbf{a}} + \mu \vec{\mathbf{b}}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ be three vector such that $\vec{\mathbf{a}} \neq \vec{0}$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = 2\vec{\mathbf{a}} \times \vec{\mathbf{c}}$, $ \vec{\mathbf{a}} = \vec{\mathbf{c}} = 1$, $ \vec{\mathbf{b}} = 4$ and $ \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \sqrt{15}$. If						
518. For any three non-zero vectors $\vec{\mathbf{r}}_1\vec{\mathbf{r}}_2$ and $\vec{\mathbf{r}}_3$, $\begin{vmatrix} \vec{\mathbf{r}}_1 \cdot \vec{\mathbf{r}}_1 & \vec{\mathbf{r}}_1 \cdot \vec{\mathbf{r}}_2 & \vec{\mathbf{r}}_1 \cdot \vec{\mathbf{r}}_3 \\ \vec{\mathbf{r}}_2 \cdot \vec{\mathbf{r}}_1 & \vec{\mathbf{r}}_2 \cdot \vec{\mathbf{r}}_2 & \vec{\mathbf{r}}_2 \cdot \vec{\mathbf{r}}_3 \\ \vec{\mathbf{r}}_3 \cdot \vec{\mathbf{r}}_1 & \vec{\mathbf{r}}_3 \cdot \vec{\mathbf{r}}_2 & \vec{\mathbf{r}}_3 \cdot \vec{\mathbf{r}}_3 \end{vmatrix} = 0$, Then, which of the following is false? a) All the three vectors are parallel to one and the same plane c) This system of equation has a non-trivial solution d) All the three vectors are linearly dependent other 519. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$, $\vec{\mathbf{c}} = \hat{\mathbf{i}}$ and $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = \lambda \vec{\mathbf{a}} + \mu \vec{\mathbf{b}}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ be three vector such that $\vec{\mathbf{a}} \neq \vec{0}$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = 2\vec{\mathbf{a}} \times \vec{\mathbf{c}}$, $ \vec{\mathbf{a}} = \vec{\mathbf{c}} = 1$, $ \vec{\mathbf{b}} = 4$ and $ \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \sqrt{15}$. If						
false? a) All the three vectors are parallel to one and the same plane c) This system of equation has a non-trivial solution d) All the three vectors are perpendicular to each other 519. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = \hat{\imath} + \hat{\jmath}$, $\vec{c} = \hat{\imath}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let \vec{a} , \vec{b} , \vec{c} be three vector such that $\vec{a} \neq \vec{0}$ and $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$, $ \vec{a} = \vec{c} = 1$, $ \vec{b} = 4$ and $ \vec{b} \times \vec{c} = \sqrt{15}$. If						
a) All the three vectors are parallel to one and the same plane c) This system of equation has a non-trivial solution d) All the three vectors are perpendicular to each other $ 519 \cdot \text{If } \vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}, \vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}, \vec{\mathbf{c}} = \hat{\mathbf{i}} \text{ and } (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = \lambda \vec{\mathbf{a}} + \mu \vec{\mathbf{b}}, \text{ then } \lambda + \mu \text{ is equal to a) } 0 \qquad \text{b) } 1 \qquad \text{c) } 2 \qquad \text{d) } 3 $ 520. Let $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ be three vector such that $\vec{\mathbf{a}} \neq \vec{0}$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = 2\vec{\mathbf{a}} \times \vec{\mathbf{c}}, \vec{\mathbf{a}} = \vec{\mathbf{c}} = 1, \vec{\mathbf{b}} = 4 \text{ and } \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \sqrt{15}. \text{ If } \vec{\mathbf{c}} = 1 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3$						
same plane c) This system of equation has a non-trivial solution d) All the three vectors are perpendicular to each other						
other 519. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = \hat{\mathbf{i}} + \hat{\mathbf{j}}$, $\vec{\mathbf{c}} = \hat{\mathbf{i}}$ and $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} = \lambda \vec{\mathbf{a}} + \mu \vec{\mathbf{b}}$, then $\lambda + \mu$ is equal to a) 0 b) 1 c) 2 d) 3 520. Let $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ be three vector such that $\vec{\mathbf{a}} \neq \vec{0}$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = 2\vec{\mathbf{a}} \times \vec{\mathbf{c}}$, $ \vec{\mathbf{a}} = \vec{\mathbf{c}} = 1$, $ \vec{\mathbf{b}} = 4$ and $ \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \sqrt{15}$. If						
a) 0 b) 1 c) 2 d) 3 520. Let $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ be three vector such that $\vec{\mathbf{a}} \neq \vec{0}$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = 2\vec{\mathbf{a}} \times \vec{\mathbf{c}}$, $ \vec{\mathbf{a}} = \vec{\mathbf{c}} = 1$, $ \vec{\mathbf{b}} = 4$ and $ \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \sqrt{15}$. If						
520. Let $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ be three vector such that $\vec{\mathbf{a}} \neq \vec{0}$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = 2\vec{\mathbf{a}} \times \vec{\mathbf{c}}$, $ \vec{\mathbf{a}} = \vec{\mathbf{c}} = 1$, $ \vec{\mathbf{b}} = 4$ and $ \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \sqrt{15}$. If						
$\vec{b} - 2\vec{c} = \lambda \vec{a}$, then λ is equal to						
a) 1 b) ± 4 c) 3 d) -2						
521. If $\vec{\mathbf{r}} \cdot \vec{\mathbf{a}} = 0$, $\vec{\mathbf{r}} \cdot \vec{\mathbf{b}} = 0$ and $\vec{\mathbf{r}} \cdot \vec{\mathbf{c}} = 0$ for some non-zero vector $\vec{\mathbf{r}}$. Then, the value of $[\vec{\mathbf{a}}\vec{\mathbf{b}}\vec{\mathbf{c}}]$ is						
a) 0 b) $\frac{1}{2}$ c) 1 d) 2						
522. If \vec{a} , \vec{b} , \vec{c} are any three mutually perpendicular vectors of equal magnitude a , then $ \vec{a} + \vec{b} + \vec{c} $ is equal to						
a) a b) $\sqrt{2}a$ c) $\sqrt{3}a$ d) $2a$						
523. A unit vector perpendicular to both the vectors $\hat{\bf i} + \hat{\bf j}$ and $\hat{\bf j} + \hat{\bf k}$ is						
a) $\frac{-\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}$ b) $\frac{-\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}}{3}$ c) $\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}$ d) $\frac{\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{3}}$						
524. Let, $\vec{\mathbf{a}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = \hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{c}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$. A vector coplanar to $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ has a projection along $\vec{\mathbf{c}}$ of						
magnitude $\frac{1}{\sqrt{3}}$, then the vector is						
a) $4\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ b) $4\hat{\mathbf{i}} + \hat{\mathbf{j}} - 4\hat{\mathbf{k}}$ c) $2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ d) None of these						
525. Let $\vec{\bf u}$ and $\vec{\bf v}$ are unit vectors such that $\vec{\bf u} \times \vec{\bf v} + \vec{\bf u} = \vec{\bf w}$ and $\vec{\bf w} \times \vec{\bf u} = \vec{\bf v}$, then the value of $[\vec{\bf u}\vec{\bf v}\vec{\bf w}]$ is						
a) 1 b) -1 c) 0 d) None of these						
526. The position vectors of the points A , B , C are $2\hat{\imath} + \hat{\jmath} - \hat{k}$, $3\hat{\imath} - 2\hat{\jmath} + \hat{k}$ and $\hat{\imath} + 4\hat{\jmath} - 3\hat{k}$ respectively. These						
points						
a) Form a right triangle						
b) Form a right trianglec) Are collinear						
d) Form a scalene triangle						
527. If $\vec{a} = \hat{i} - \hat{j} - \hat{k}$ and $\vec{b} = \lambda \hat{i} - 3\hat{j} + \hat{k}$ and the orthogonal projection of \vec{b} on \vec{a} is						
$\frac{4}{3}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$ then λ is equal to						
a) 0 b) 2 c) 12 d) -1						
528. If three points A , B and C have position vectors $(1, x, 3)$, $(3,4,7)$ and $(y, -2, -5)$ respectively and, if they are collinear, then (x, y) is equal to						

	a) $(2, -3)$	b) (-2,3)	c) (2,3)	d) $(-2, -3)$			
5	29. $\overrightarrow{\mathbf{OA}}$ and $\overrightarrow{\mathbf{BO}}$ are two vector	rs of magnitude 5 and 6 res	pectively. If $\angle BOA = 60^{\circ}$, t	hen $\overrightarrow{\mathbf{OA}} \cdot \overrightarrow{\mathbf{OB}}$ is equal to			
	a) 0	b) 15	c) -15	d) $15\sqrt{3}$			
5	530. If \vec{a} and \vec{b} are two unit vectors inclined at an angle θ such that $\vec{a} + \vec{b}$ is a unit vector, then θ is equal to						
	a) $\frac{\pi}{3}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{2}$	d) $\frac{2\pi}{3}$			
531. $\overrightarrow{AB} \times \overrightarrow{AC} = 2\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$, then the area of \triangle ABC is							
	a) 3 sq units	b) 4 sq units		, 1			
532. If the vectors $\vec{\mathbf{c}}$, $\vec{\mathbf{a}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ and $\vec{\mathbf{b}} = \hat{\mathbf{j}}$ are such that $\vec{\mathbf{a}}$, $\vec{\mathbf{c}}$ and $\vec{\mathbf{b}}$ from a right handed system, then $\vec{\mathbf{c}}$ is							
	a) $z\hat{\mathbf{i}} - x\hat{\mathbf{k}}$	b) o	c) y ĵ	$d) - z\hat{\mathbf{i}} - x\hat{\mathbf{k}}$			
5	533. Let $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ be the vectors such that $\vec{\mathbf{a}} \neq 0$ and $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = 2\vec{\mathbf{a}} \times \vec{\mathbf{c}}$, $ \vec{\mathbf{a}} = \vec{\mathbf{c}} = 1$, $ \vec{\mathbf{b}} = 4$ and $ \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \sqrt{15}$. If						
	$\vec{\mathbf{b}} - 2\vec{\mathbf{c}} = \lambda \vec{\mathbf{a}}$, then λ is equal to λ	ual to					
	a) 1	b) -4	c) 3	d) -2			
5	34. The position vectors of <i>P</i>	and 0 are respectively \vec{a} and	and \vec{b} . If R is a point on $\vec{P}O$ si	uch that $\vec{P}R = 5 \vec{P}O$, then			
	534. The position vectors of P and Q are respectively \vec{a} and \vec{b} . If R is a point on $\vec{P}Q$ such that $\vec{P}R = 5 \vec{P}Q$, then the position vector of R , is						
	_		c) $4\vec{a} - 5\vec{b}$	d) $4\vec{b} + 5\vec{a}$			
5	35. The vector \vec{c} is perpendic	•	•	•			
	$\vec{c} \cdot (\hat{\imath} + 2\hat{\jmath} - 7\hat{k})$. Then, $\vec{c} =$	=					
	_	$b) -7\hat{\imath} - 5\hat{\jmath} - \hat{k}$	=	d) None of these			
5	36. If <i>ABCD</i> is a quadrilatera	l, then $\vec{B}A + \vec{B}C + \vec{C}D + \vec{D}A$	A =				
	a) $2\vec{B}A$	b) 2 <i>ĀB</i>	c) 2 <i>ĀC</i>	d) 2 <i>BC</i>			
5	37. The vector equation of th						
	a) $ \vec{\mathbf{r}} - (\hat{\mathbf{i}} + \hat{\mathbf{k}}) = 4$	b) $ \vec{\mathbf{r}} + (\hat{\mathbf{i}} + \hat{\mathbf{k}}) = 4^2$	c) $ \vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{k}}) = 4$	$d) \vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{k}}) = 4^2$			
538. If three concurrent edges of a parallelopiped of volume V represent vectors \vec{a} , \vec{b} , \vec{c} then the volume of the parallelopiped whose three concurrent edges are the three concurrent diagonals of the three faces of the given parallelopiped, is							
	a) <i>V</i>	b) 2 <i>V</i>	c) 3 <i>V</i>	d) None of these			
539. A unit vector in xy -plane makes an angle of 45° with the vector $\hat{\imath} + \hat{\jmath}$ and an angle of 60° with the vector $3\hat{\imath} - 4\hat{\jmath}$ is							
	a) î	b) $\frac{\hat{\iota} + \hat{\jmath}}{\sqrt{2}}$	c) $\frac{\hat{\iota} - \hat{\jmath}}{\sqrt{2}}$	d) None of these			
540. The equation $\mathbf{r}^{\vec{2}} - 2 \mathbf{\vec{r}} \cdot \mathbf{\vec{c}} + h = 0$, $ \mathbf{\vec{c}} > \sqrt{h}$, represent							
	a) Circle	b) Ellipse	c) Cone	d) Sphere			
5	41. The points with position		•				
	a) -8	b) 4	c) 8	d) 12			
5	42. If $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{b} \times (\vec{b} \times \vec{b})$	(\vec{c}) and $\vec{a} \cdot \vec{b} \neq 0$, then $[\vec{a}\vec{b}\vec{c}]$] =				
	a) 0	b) 1	c) 2	d) 3			
5	$43. \left[\vec{a} \vec{b} \vec{a} \times \vec{b} \right] + \left(\vec{a} \cdot \vec{b} \right)^2 =$	·	•	•			
	a) $ \vec{a} ^2 \vec{b} ^2$	b) $ \vec{a} + \vec{b} ^2$	c) $ \vec{a} ^2 + \vec{a} ^2$	d) None of these			
544. If $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}$ are non-coplanar vectors and p, q are real numbers, then the equality $[3\vec{\mathbf{u}} \ p \ \vec{\mathbf{v}} \ p \ \vec{\mathbf{w}}] - [p \ \vec{\mathbf{v}} \vec{\mathbf{w}} \ q \ \vec{\mathbf{u}}] - [2\vec{\mathbf{w}} \ q \ \vec{\mathbf{v}} \ q \ \vec{\mathbf{u}}] = 0$ holds for							
			b) More than two but not all values of (p, q)				
	c) All values of (p. q)			= = = = = = = = = = = = = = = = = = = =			
$545 \cdot \vec{a} \cdot [(\vec{b} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c})]$ equals							
	a) 0	b) $\vec{a} + \vec{b} + \vec{c}$	c) a	d) $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} + \vec{\mathbf{c}})$			
546. If the vectors $\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, $-\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$ represent the diagonals of a parallelogram, them its area will be							
J	a) 21	b) $\frac{\sqrt{21}}{2}$	c) $2\sqrt{21}$	d) $\frac{\sqrt{21}}{t}$			
		2		4			

563. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$, then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, is

c) -3/2

d) None of these

564. If \vec{a} , \vec{b} , \vec{c} are vectors such that $\vec{c} = \vec{a} + \vec{b}$ and $\vec{a} \cdot \vec{b} = 0$, then

a)
$$a^2 + b^2 + c^2 = 0$$
 b) $a^2 - b^2 = c^2$ c) $a^2 + b^2 = c^2$

b)
$$a^2 - b^2 = c^2$$

c)
$$a^2 + b^2 = c^2$$

d)
$$\vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}}$$

565. If $\vec{a} = 2\hat{\imath} + \hat{\jmath} + 2\hat{k}$ and $\vec{b} = 5\hat{\imath} - 3\hat{\jmath} + \hat{k}$, then the projection of \vec{b} on \vec{a} is

d) 6

566. Forces of magnitudes 3 and 4 units acting along $6\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + 6\hat{k}$ respectively act on a particle and displace it from (2,2-1) to (4,3,1). The work done is

567. The value of $[\vec{a}\vec{b} + \vec{c}\vec{a} + \vec{b} + \vec{c}]$ is

a)
$$[\vec{a}\vec{b}\vec{c}]$$

c)
$$2[\vec{a}\vec{b}\vec{c}]$$

d)
$$\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$$

JOIN JEE PAID TEST PAPER'S WHATSAPP GROUP **TODAY TO** JANUARY FEES

RS.500 ONLY

SEARCH GOOGLE **RAVI JEE TEST PAPERS FOR MORE FREE PAPERS**

> **WHATSAPP** 8056206308