DETERMINANTS T2

51. $\begin{vmatrix} b^2 c^2 & bc & b+c \\ c^2 a^2 & ca & c+a \\ a^2 b^2 & ab & a+b \end{vmatrix}$ is equal to a) $\frac{1}{abc}(ab+bc+ca)$ b) ab+bc+cac) 0 d) a + b + c52. If $a^{-1} + b^{-1} + c^{-1} = 0$ such that $\begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix} = \lambda$ then value of λ is d) None of these a) 0 b) abc c) _abc 53. If *a*, *b*, *c*, are in A.P., then the value of $\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$, is d) None of these a) 3 c) 0 b) _3 54. $\begin{vmatrix} a-b & b-c & c-a \\ x-y & y-z & z-x \\ p-q & p-r & r-p \end{vmatrix}$ is equal to b) 0 a) a(x + y + z) + b(p + q + r) + cc) abc + xyz + pprd) None of the above 55. $\begin{vmatrix} a - b + c & -a - b + c & 1 \\ a + b + 2c & -a + b + 2c & 2 \\ 3c & 3c & 3\end{vmatrix}$ is b) 🚮 c) 12ah a) 67h d) 2*ah* In the determinant $\begin{vmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{vmatrix}$, the value of cofactor to its minor of the element 3 is 56. b) 0 d) 2 a) _1 c) 1 57. If ω is a cube root of unity, then for polynomial is $\begin{vmatrix} x+1 & \omega & \omega^2 \\ \omega & x+\omega^2 & 1 \\ \omega^2 & 1 & x+\omega \end{vmatrix}$ c) 2 a) 1 b) 👝 d) 0 58. If $\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{vmatrix} = 0$, then x equals a) a + b + cb) -(a + b + c) c) (a + b + c)d) 0, -(a + b + c)59. If *a*, *b*, *c* are the sides of a △ABC and A, B, C are respectively the angles opposite to them, then $\begin{vmatrix} a^2 & b \sin A & c \sin A \\ b \sin A & 1 & \cos(B-C) \\ c \sin A & \cos(B-C) & 1 \end{vmatrix}$ equals a) $\sin A - \sin B \sin C$ b) abcc) 1 d) 0 If $D_r = \begin{vmatrix} 2^{r-1} & 3^{r-1} & 4^{r-1} \\ x & y & z \\ 2^n - 1 & (3^n - 1)/2 & (4^n - 1)/3 \end{vmatrix}$, then the value of $\sum_{r=1}^n D_r$ is equal to 60.

a) 1	b) <u>–</u> 1	c) 0
	-	

61. If **A**, **B** and **C** are the angles of a triangle and $\begin{vmatrix} 1 & 1 & 1 \\ 1 + \sin A & 1 + \sin B & \sin C \\ \sin A + \sin^2 A & \sin B + \sin^2 B & \sin C + \sin^2 C \end{vmatrix} - 0$ then the triangle must be b) Isosceles a) Equilateral c) Any triangle d) Right angled Let $A = \begin{bmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{bmatrix}$, where $0 \le \theta < 2\pi$. Then, which of the following is not correct? 62. a) Det(A) = 0b) $Det(A) \in (-\infty, 0)$ c) $Det(A) \in [2,4]$ d) $Det(A) \in [-2,\infty)$ 63. $\begin{vmatrix} 1 & 5 & \pi \\ \log_e e & 5 & \sqrt{5} \\ \log_{10} 10 & 5 & e \end{vmatrix}$ is equal to a) 🚛 b) 🧧 c) 1 d) 0 64. If $a^2 + b^2 + c^2 = -2$ and $f(x) = \begin{vmatrix} 1 + a^2 x & (1 + b^2) x & (1 + c^2) x \\ (1 + a^2) x & (1 + b^2 x) & (1 + c^2) x \\ (1 + a^2) x & (1 + b^2) x & (1 + c^2 x) \end{vmatrix}$, then f(x) is a polynomial of degree a) 2 c) 0 d) 1 65. If c < 1 and the system of equations x + y - 1 = 0, 2x - y - c = 0 and -bx + 3by - c = 0 is consistent, then the possible real values of **b** are d) None of these a) $b \in \left(-3, \frac{3}{4}\right)$ b) $b \in \left(-\frac{3}{4}, 4\right)$ c) $b \in \left(-\frac{3}{4}, 3\right)$ The value of $\begin{vmatrix} 1 & 1 & 1 \\ (2^x + 2^{-x})^2 & (3^x + 3^{-x})^2 & (5^x + 5^{-x})^2 \\ (2^x & 2^{-x})^2 & (3^x & 3^{-x})^2 & (5^x & 5^{-x})^2 \end{vmatrix}$ is 66. a) 0 d) 1 c) 30-* 67. If A is an invertible matrix, then $det(A^{-1})$ is equal to b) $\frac{1}{\det(A)}$ c) 1 d) None of these a) det b(A) 68. If $a \neq 0, b \neq 0, c \neq 0$, then $\begin{vmatrix} 1+a & 1 & 1\\ 1 & 1+b & 1\\ 1 & 1 & 1+c \end{vmatrix}$ is equal to b) $abc\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)$ c) 0 d) $1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ a) abc

69. If
$$f(x) = \begin{vmatrix} a & -1 & 0 \\ ax & a & -1 \\ ax^2 & ax & a \end{vmatrix}$$
, then $f(2x) - f(x)$ is equal to
a) ax b) $ax(2a + 3x)$ c) $ax(2 + 3x)$ d) None of these

70. If
$$\begin{vmatrix} -12 & 0 & \lambda \\ 0 & 2 & -1 \\ 2 & 1 & 15 \end{vmatrix} = -360$$
, then the value of λ is
a) -1 b) -2 c) -3 d) 4

71. If ω is a complex cube root of unity, then

	$\begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix}$ is equal to	-) 0	4)		
	a) 1 b) I	c) 0	a) _w		
72.	The value of $\begin{vmatrix} {}^{10}C_4 & {}^{10}C_5 & {}^{11}C_m \\ {}^{11}C_6 & {}^{12}C_7 & {}^{12}C_{m+2} \\ {}^{12}C_8 & {}^{12}C_9 & {}^{13}C_{m+4} \end{vmatrix} = 0, \text{ whe}$	n <i>m</i> is equal to			
	a) 6 b) 5	c) 4	d) 1		
73.	If $\begin{vmatrix} 1 & 1 & 0 \\ 2 & 0 & 3 \\ 5 & -6 & x \end{vmatrix} = 29$, then x is				
	a) 1 b) 2	c) 3	d) 4		
74.	$\begin{vmatrix} \sin^2 x & \cos^2 x & 1 \\ \cos^2 x & \sin^2 x & 1 \\ -10 & 12 & 2 \end{vmatrix} = $ a) 0				
	b) $12\cos^2 x - 10\sin^2 x$				
	c) $12\sin^2 x - 10\cos^2 x - 2$				
	d) $10 \sin 2x$				
75.	5. If <i>A</i> and <i>B</i> are square matrices of order 3 such that $ A = -1$, $ B = 3$ then $ 3AB $ is equal to				
	a) _9 b) _81	c) _27	d) 81		
76.	5. If <i>a</i> , <i>b</i> , <i>c</i> are non-zero real numbers, then the system of equations (a + a)x + a y + a z = 0 a x + (a + b)y + a z = 0 a x + a y + (a + c)z = 0 has a non-trivial solution, if a) $a^{-1} = -(a^{-1} + b^{-1} + c^{-1})$				
	b) $a^{-1} = a + b + c$				
	c) $a + a + b + c = 1$				
	d) None of these				
77.	The determinant $\begin{vmatrix} a & b & a\alpha - b \\ b & c & b\alpha - c \\ 2 & 1 & 0 \end{vmatrix}$ vanishes, if				
	a) a, b, c are in AP b) $\alpha = \frac{1}{2}$	c) a,b,c are in GP	d) Both (b) or (c)		
78.	If -9 is a root of the equation $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$, then t	he other two roots are			
	a) 2, 7 b) _{-2, 7}	c) _{2, -7}	d) _{-2, -7}		
79.	If $ab + bc + ca = 0$ and $\begin{vmatrix} a & x & c & b \\ c & b - x & a \\ b & a & c - x \end{vmatrix} = 0$, then one of the value of ${f x}$ is	S		

b) $\left[\frac{3}{2}(a^2+b^2+c^2)\right]^{1/2}$ a) $(a^2 + b^2 + c^2)^{1/2}$ d) None of these c) $\left[\frac{1}{2}(a^2+b^2+c^2)\right]^{1/2}$ The roots of the equation $\begin{vmatrix} x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1 \end{vmatrix} = 0$, are 80. a) _{1, 2} c) 1, -2d) _1, _2 81. $\begin{vmatrix} 1 & 2 & 3 \\ 1^3 & 2^3 & 3^2 \\ 1^5 & 2^5 & 3^5 \end{vmatrix}$ is equal to a) 1! 213 b) 1! 3! 5! c) 6! d) 91 82. If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $|A^3| = 125$, then the value of α is c) <u>1</u>3 b) <u>1</u>2 d) | 5 a) 11 The value of $\begin{vmatrix} x & 4 & y+z \\ y & 4 & z+x \\ z & 4 & x+y \end{vmatrix}$, is 83. b) x + y + zc) _{x yz} d) 0 a) 4 If A, B, C be the angles of a triangle, then $\begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix}$ is equal to 84. d) $\cos A + \cos B \cos C$ a) 1 b) 0 c) $\cos A \cos B \cos C$ 85. One factor of $\begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & cb \\ ca & cb & c^2 + x \end{vmatrix}$ is a) 💦 b) $(a^2 + x)(b^2 + x)(c^2 + x)$ c) <u>1</u> d) None of these 86. If $\begin{vmatrix} x+1 & x+2 & x+3 \\ x+2 & x+3 & x+4 \\ x+a & x+b & x+c \end{vmatrix} = 0$ then *a*, *b*, *c* are in a) AP b) HP c) GP d) None of these If $A = \begin{bmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ x & x & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then 87. $A^3 - 4A^2 + 3A + I$ is equal to b) 🗗 c) _] d) <u>-21</u> a) 🛐 Determinant $\begin{vmatrix} 1 & x & y \\ 2 & \sin x + 2x & \sin y + 3y \\ 3 & \cos x + 3x & \cos y + 3y \end{vmatrix}$ is equal to 88. c) $\cos(x+y)$ d) $xy(\sin(x-y))$ b) $\cos(x-y)$ a) $\sin(x - y)$ If *a*, *b*, *c* are the positive integers, then the determinant $\Delta = \begin{vmatrix} a^2 + x & ab & ac \\ ab & b^2 + x & bc \\ ac & bc & c^2 + x \end{vmatrix}$ is divisible by 89.

a)
$$x^{x}$$
 b) x^{z} c) $(a^{2} + b^{2} + c^{2})$ d) None of these
90. If a, b, c are non-zero real numbers, then $\begin{vmatrix} bc & ca & ab \\ ca & bc & bc \\ ab & bc & ca^{2} \\ bb & bc & ca^{2} \\ bb & bc & ca^{2} \\ bb & bc & ca^{2} \\ ca^{2} \\ bb & bc & ca^{2} \\ ca^{2} \\ bb & bc & ca^{2} \\ ca^{2} \\ ca^{2} \\ bb & bc & ca^{2} \\ ca^{2}$

d) 1, 2
d) 16/3