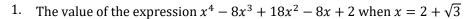
COMPLEX NUMBERS AND QUADRATIC EQUATIONS



a) 2

b)1

c) 0

2. If $z = x + iy(x, y \in R, x \neq -1/2)$, the number of value of z safisfying $|z|^n = z^2|z|^{n-2} + iy(x, y \in R, x \neq -1/2)$ $z|z|^{n-2} + 1 \cdot (n \in N, n > 1)$ is

a) 0

b)1

c) 2

d)3

3. If α , β , γ are the roots of $x^3 - x^2 - 1 = 0$ then the value of $(1 + \alpha)/(1 - \alpha) + (1 + \beta)/(1 - \alpha)$ β) + $(1 + \gamma)/(1 - \gamma)$ is equal to

a) -5

b) - 6

c) -7

d)-2

vww.ravitestpapers.com

www.ravitestpapers.ir

4. If the equation $|x^2 + bx + c| = k$ has four roots, then

a) $b^2 - 4c > 0$ and $0 < k < \frac{4c - b^2}{4}$ b) $b^2 - 4c < 0$ and $0 < k < \frac{4c - b^2}{4}$

c) $b^2 - 4c > 0$ and $k > \frac{4c - b^2}{4}$

d) None of these

5. The value of z satisfying the equation $\log z + \log z^2 + \cdots + \log z^n = 0$ is

a)
$$\cos \frac{4m\pi}{n(n+1)} + i \sin \frac{4m\pi}{n(n+1)}$$
, $m = 1, 2, ...$

b)
$$\cos \frac{4m\pi}{n(n+1)} - i \sin \frac{4m\pi}{n(n+1)}, m = 1, 2, ...$$

c)
$$\sin \frac{4m\pi}{n(n+1)} + i \cos \frac{4m\pi}{n(n+1)}$$
, $m = 1, 2, ...$

6. If $a(p+q)^2 + 2bpq + c = 0$ and $a(p+r)^2 + 2bpr + c = 0$ ($a \ne 0$), then

a) $qr = p^2$

b) $qr = p^2 + \frac{c}{a}$ c) $qr = -p^2$

d) None of these

7. The value of *m* for which one of the roots of $x^2 - 3x + 2m = 0$ is double of one of the roots of $x^2 - x + m = 0$ is

a)-2

b)1

c) 2

d) None of these

8. Roots of the equations are $(z + 1)^5 = (z - 1)^5$ are

a) $\pm i \tan \left(\frac{\pi}{5}\right)$, $\pm i \tan \left(\frac{2\pi}{5}\right)$

b) $\pm i \cot\left(\frac{\pi}{5}\right)$, $\pm i \cot\left(\frac{2\pi}{5}\right)$

c) $\pm i \cot \left(\frac{\pi}{\epsilon}\right)$, $\pm i \tan \left(\frac{2\pi}{\epsilon}\right)$

d) None of these

9. Total number of integral values of 'a' so that $x^2 - (a+1)x + a - 1 = 0$ has integral roots is equal to

a) 1

b)2

c) 4

d) None of these

- 10. z_1, z_2, z_3, z_4 are distinct complex numbers representing the vertices of a quadrilateral ABCD taken in order. If $z_1-z_4=z_2-z_3$ and $\arg[(z_4-z_1)/(z_2-z_1)]=\pi/2$, then the quadrilateral is
 - a) Rectangle
- b) Rhombus
- c) Square
- d) Trapezium
- 11. If the roots of the equation $ax^2 + bx + c = 0$ are of the form (k+1)/k and (k+2)/(k+1), then $(a + b + c)^2$ is equal to
 - a) $2b^2 ac$
- b) a^2
- c) $b^2 4ac$
- d) $b^2 2ac$

vww.ravitestpapers.com

www.ravitestpapers.ır

- 12. Let r, s and t be the roots of the equation, $8x^3 + 1001x + 2008 = 0$. The value of $(r+s)^3 + (s+t)^3 + (t+r)^3$ is
 - a) 251
- b)751
- c) 735
- d)753
- 13. If b > a, then the equation (x a)(x b) 1 = 0 has
 - a) Both roots in (a, b)

b) Both roots in $(-\infty, a)$

c) Both roots in $(b, +\infty)$

- One root in $(-\infty, a)$ and the other in
- 14. If l, m, n are real $l \neq m$, then the roots of the equation $(l-m)x^2 5(l+m)x 2(l-m) = 1$
 - a) Real and equal
- b) Complex
- c) Real and unequal
- d) None of these
- 15. If the expression $x^2 + 2(a + b + c)x + 3(bc + ca + ab)$ is a perfect square, then
 - a) a = b = c
- b) $a = \pm b = \pm c$
- c) $a = b \neq c$
- d) None of these

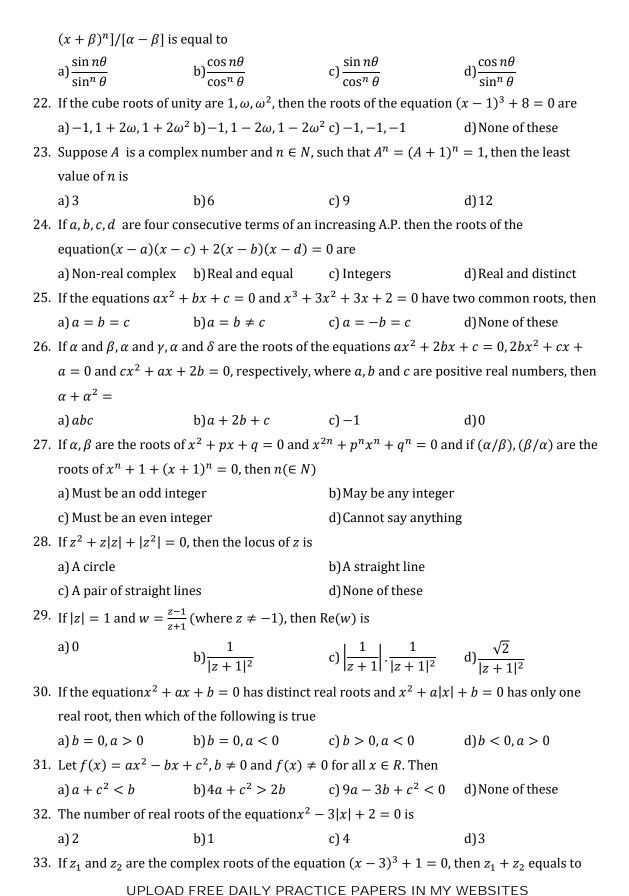
- 16. If $|z| < \sqrt{2} 1$, then $|z^2 + 2z \cos \alpha|$ is
 - a) Less than 1
- b) $\sqrt{2} + 1$
- c) $\sqrt{2} 1$
- d) None of these
- 17. If ω be a complex n^{th} root of unity, then $\sum_{i=1}^n (ar+b) \, \omega^{r-1}$ is equal to
 - a) $\frac{n(n+1)a}{2}$
- b) $\frac{nb}{1-n}$
- c) $\frac{na}{\omega 1}$
- d) None of these
- 18. If $a, b \in R$, $a \ne 0$ and the quadratic equation $ax^2 bx + 1 = 0$ has imaginary roots then (a + b + 1) is
 - a) Positive

b) Negative

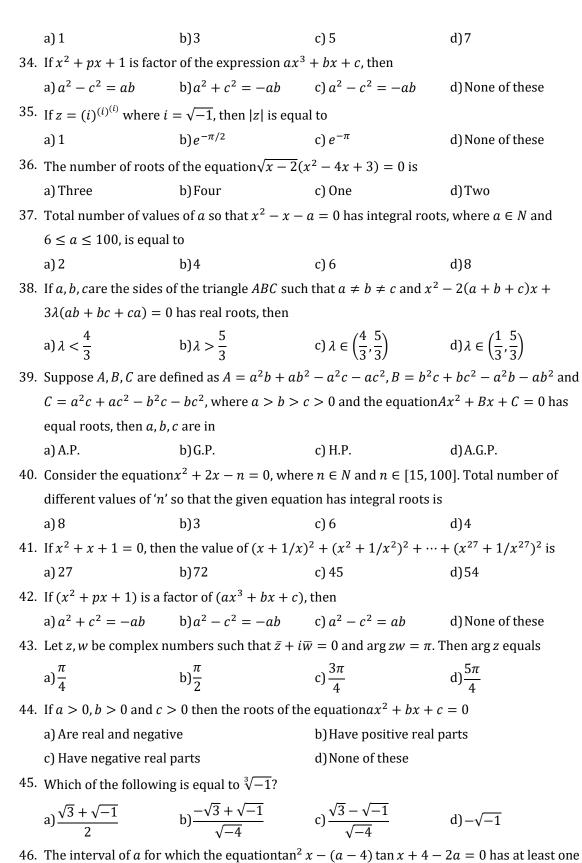
c) Zero

- d) Dependent on the sign of b
- 19. Sum of the non-real roots of $(x^2 + x 2)(x^2 + x 3) = 12$ is
- b)1

- d)6
- 20. Let $z=\cos\theta+i\sin\theta$. Then, the value of $\sum_{m=1}^{15} {\rm Im}(z^{2m-1})$ at $\theta=2^\circ$ is
- b) $\frac{1}{3 \sin 2^{\circ}}$ c) $\frac{1}{2 \sin 2^{\circ}}$
- 21. If α, β be the roots of the equation $u^2 2u + 2 = 0$ and if $\cot \theta = x + 1$, then $[(x + \alpha)^n -$

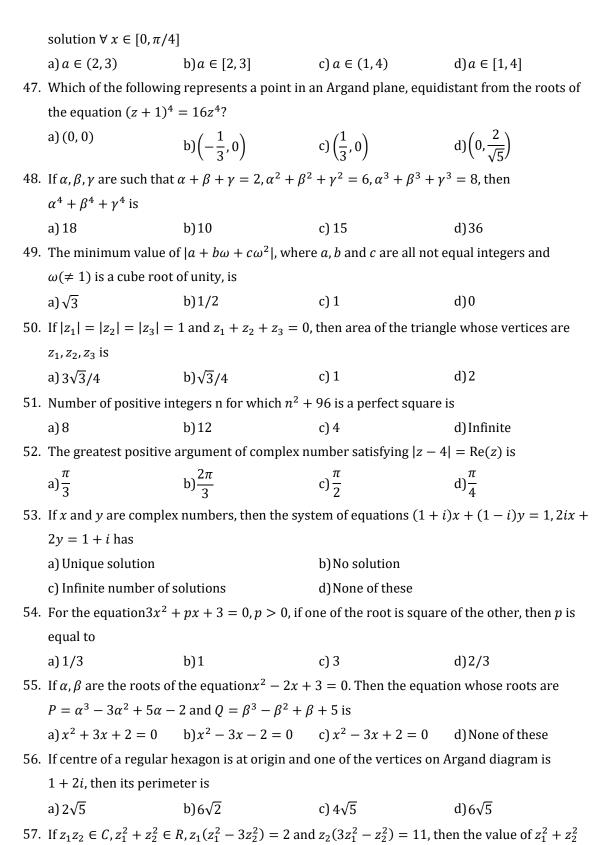


WHATSAPP - 8056206308



ww.ravitestpapers.com

www.ravitestpapers.ır



vww.ravitestpapers.com

www.ravitestpapers.ir

15

a) 10	b)12	c) 5	d)8

- 58. P(x) is a polynomial with integral coefficients such that for four distinct integers a, b, c, d; P(a) = P(b) = P(c) = P(d) = 3. If P(e) = 5 (e is an integer), then a) e = 1 b) e = 3 c) e = 4 d) No real value of e
- 59. If α , β are the roots of $ax^2 + bx + c = 0$ and a + b, $\beta + h$ are the roots of $px^2 + qx + r = 0$, then h =

a)
$$-\frac{1}{2}\left(\frac{a}{b} - \frac{p}{q}\right)$$
 b) $\left(\frac{b}{a} - \frac{q}{p}\right)$ c) $\frac{1}{2}\left(\frac{b}{a} - \frac{q}{p}\right)$ d) None of these

60. If t and c are two complex numbers such that $|t| \neq |c|, |t| = 1$ and z = (at + b)/(t - c), z = x + iy. Locus of z is (where a, b are complex numbers)

ww.ravitestpapers.com

www.ravitestpapers.ır

d)45 km from town B

- a) Line segment b) Straight line c) Circle d) None of these
- 61. The complex numbers z = x + iy which satisfy the equation |(z 5i)/(z + 5i)| = 1 lie on a) The *x*-axis b) The straight line y = 5
 - c) A circle passing through the origin d) None of these
- 62. If α and β ($\alpha < \beta$) are the roots of the equation $\alpha^2 + bx + c = 0$, where $\alpha < 0 < b$, then a) $0 < \alpha < \beta$ b) $\alpha < 0 < \beta < |\alpha|$ c) $\alpha < \beta < 0$ d) $\alpha < 0 < |\alpha| < \beta$
- 63. All the values of m for which both the roots of the equation $x^2 2mx + m^2 1 = 0$ are greater than -2 but less than 4, lie in the interval
 - a) -2 < m < 0 b) m > 3 c) -1 < m < 3 d) 1 < m < 4

b) 45 km from town A c) Town A

- 64. Two towns A and B are 60 km apart. A school is to be built to serve 150 students in town A and 50 students in town B. If the total distance to be travelled by all 200 students is to be as small as possible, then the school be built at
- 65. If $z = [(\sqrt{3}/2) + i/2]^5 + [(\sqrt{3}/2) i/2]^5$, then

a) Town B

- a) Re(z) = 0 b) Im(z) = 0 c) Re(z) > 0, Im(z) d) Re(z) > 0, Im(z) < 0
- 66. Let p and q be real numbers such that $p \neq 0$, $p^3 \neq q$ and $p^3 \neq -q$. If α and β are non-zero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is

a)
$$(p^3 + q)x^2 - (p^3 + 2q)x + (p^3 + q) = 0$$
 b) $(p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q) = 0$ c) $(p^3 - q)x^2 - (5p^3 - 2q)x + (p^3 - q) = 0$ d) $(p^3 - q)x^2 - (5p^3 + 2q)x + (p^3 - q) = 0$

67. Let p and q be roots of the equation $x^2 - 2x + A = 0$ and let r and s be the roots of the equation $x^2 - 18x + B = 0$. If p < q < r < s are in arithmetic progression, then the values of A and B are

a) 3,
$$-77$$

c)
$$-3$$
, -77

$$d) -3,77$$

- 68. If α and β are the roots of the equation $x^2 + px + q = 0$, and α^4 and β^4 are the roots of $x^2 - rx + q = 0$, then the roots of $x^2 - 4qx + 2q^2 - r = 0$ are always
 - a) Both non-real
- b) Both positive
- c) Both negative
- d)Opposite in sign

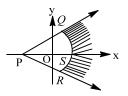
ww.ravitestpapers.com

www.ravitestpapers.ır

69. The shaded region, where

$$P \equiv (-1, 0), Q \equiv (-1 + \sqrt{2}, \sqrt{2})$$

$$R \equiv (-1 + \sqrt{2}, -\sqrt{2}), S \equiv (1, 0)$$
 is represented by



a)
$$|z + 1| > 2$$
, $|\arg(z + 1) < \frac{\pi}{4}|$

b)
$$|z+1| < 2$$
, $\arg(z+1) < \frac{\pi}{2}$

c)
$$|z-1| > 2$$
, $\arg(z+1) > \frac{\pi}{4}$

d)
$$|z-1| < 2$$
, $|\arg(z+1) > \frac{\pi}{4}$

70. Number of values of a for which equations $x^3 + ax + 1 = 0$ and $x^4 + ax^2 + 1 = 0$ have a common root

d) Infinite

71. If
$$|z-2-i| = |z| \left| \sin \left(\frac{\pi}{4} - \arg z \right) \right|$$
, then locus of z is

a) A pair of straight lines

b) Circle

c) Parabola

d)Ellipse

72. If
$$z = i \log(2 - \sqrt{-3})$$
, then $\cos z =$

$$a)-1$$

b)
$$-1/2$$

73. If $x, y \in R$ satisfy the Equation $x^2 + y^2 - 4x - 2y + 5 = 0$, then the value of the expression $\left[\left(\sqrt{x} - \sqrt{y}\right)^2 + 4\sqrt{xy}\right]/(x + \sqrt{xy})$ is

a)
$$\sqrt{2} + 1$$

b)
$$\frac{\sqrt{2}+1}{2}$$

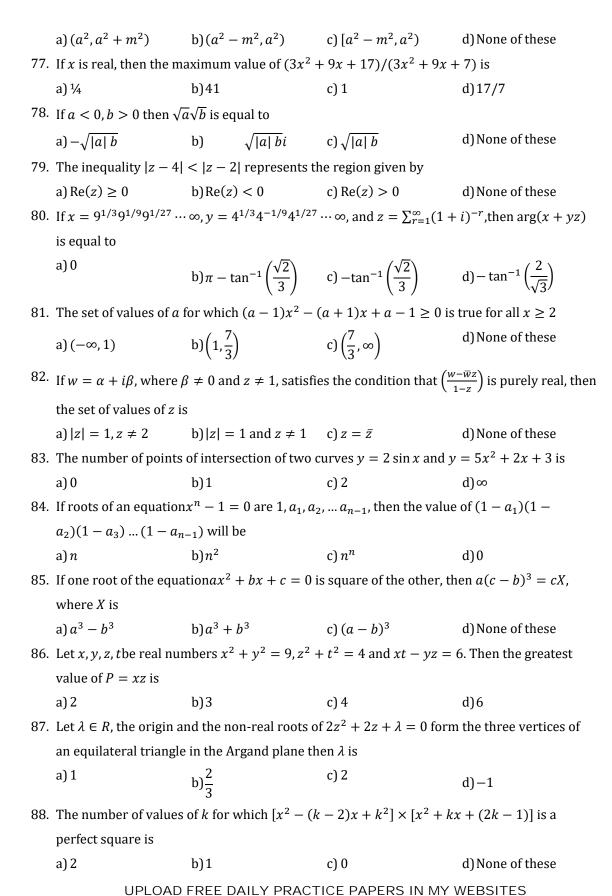
b)
$$\frac{\sqrt{2}+1}{2}$$
 c) $\frac{\sqrt{2}-1}{\sqrt{2}}$ d) $\frac{\sqrt{2}+1}{\sqrt{2}}$

d)
$$\frac{\sqrt{2}+1}{\sqrt{2}}$$

74. The least value of the expression
$$x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14$$
 is

- b) No least value
- c) 0

- d) None of these
- 75. If $A(z_1)$, $B(z_2)$, $C(z_3)$ are the vertices of the triangle ABC such that $(z_1 z_2)/(z_3 z_2) =$ $(1/\sqrt{2}) + (i/\sqrt{2})$, the triangle *ABC* is
 - a) Equilateral
- b) Right angled
- c) Isosceles
- d)Obtuse angled
- 76. If the roots of the equation, $x^2 + 2ax + b = 0$, are real and distinct and they differ by at most 2m, then b lies in the interval



vww.ravitestpapers.com

www.ravitestpapers.ır

OF LOAD FREE DATE FRANCISCO FAIL ERS IN WE WEDSTIES

89. Let p(x) = 0 be a polynomial equation of the least possible degree, with rational

	coefficients, having $\sqrt[3]{7} + \sqrt[3]{49}$ as one of its roots. Then the product of all the roots of					
	p(x) = 0 is					
	a) 56	b)63	c) 7	d)49		
90.	The number of real solutions of the equation $ x ^2 - 3 x + 2 = 0$ is					
	a) 4	b)1	c) 2	d)0		
91.	The number of integral values of a for which the quadratic equation $(x + a)(x + 1991) +$					
	1 = 0 has integral roots are					
	a) 3	b)0	c) 1	d)2		
92.	Let z and ω be two complex numbers such that $ z \le 1$, $ \omega \le 1$ and $ z - i\omega = z - i\overline{\omega} = 1$					
	then z equals					
	a) 1 or <i>i</i>	b) <i>i</i> or – <i>i</i>	c) 1 or -1	d) i or -1		
93.	z_1 and z_2 lie on a circle	e with centre at the orig	gin. The point of interse	ction z_3 of the tangents		
	at z_1 and z_2 is given by					
	$a)\frac{1}{2}(\overline{z}_1 + \overline{z}_2)$	b) $\frac{2z_1z_2}{z_1+z_2}$	c) $\frac{1}{2} \left(\frac{1}{z_1} + \frac{1}{z_2} \right)$	$\mathrm{d})\frac{z_1+z_2}{\overline{z}_1\overline{z}_2}$		
94.	If α and β be the roots	of the equation $x^2 + px$	$\alpha - 1/(2p^2) = 0 \text{ where}$	$p \in R$. Then the		
	minimum value of $\alpha^4 + \beta^4$ is					
	a) $2\sqrt{2}$	b) $2 - \sqrt{2}$	c) 2	d) $2 + \sqrt{2}$		
95.	If α , β are the roots of $ax^2 + c = bx$, then the equation $(a + cy)^2 = b^2y$ in y has the roots					
	a) $\alpha \beta^{-1}$, $\alpha^{-1} \beta$	b) α^{-2} , β^{-2}	c) α^{-1} , β^{-1}	d) α^2 , β^2		
96.	If $(\cos \theta + i \sin \theta)(\cos 2\theta + i \sin 2\theta) \cdots (\cos n\theta + i \sin n\theta) = 1$, then the value of θ is, $m \in \mathbb{N}$					
	a) $4m\pi$	b) $\frac{2m\pi}{n(n+1)}$	c) $\frac{4m\pi}{n(n+1)}$	$\mathrm{d})\frac{m\pi}{n(n+1)}$		
97.	The roots of the cubic equation $(z + ab)^3 = a^3$, such that $a \ne 0$, represent the vertices of a					
	triangle of sides of length					
	a) $\frac{1}{\sqrt{3}} ab $	b) $\sqrt{3} a $	c) $\sqrt{3} b $	d) a		
98.	A quadratic equation v	whose product of roots	x_1 and x_2 is equal to 4 a	and satisfying the		
	relation $x_1/(x_1-1)$ +	elation $x_1/(x_1 - 1) + x_2/(x_2 - 1) = 2$ is				
	a) $x^2 - 2x + 4 = 0$	$b)x^2 + 2x + 4 = 0$	c) $x^2 + 4x + 4 = 0$	$d)x^2 - 4x + 4 = 0$		
99.	If the equation $\cot^4 x$ –	the equation $\cot^4 x - 2 \csc^2 x + a^2 = 0$ has at least one solution then, sum of all				
	possible integral values of a is equal to					
	a) 4	b)3	c) 2	d)0		

www.ravitestpapers.com

www.ravitestpapers.in

UPLOAD FREE DAILY PRACTICE PAPERS IN MY WEBSITES

100 The number of irrational roots of the equation $4x/(x^2 + x + 3) + 5x/(x^2 - 5x + 3) = -3/2$

a) 4

b)0

c) 1

d)2

CBSE WHATSAPP TEST GROUP

CLASS 10

8056206308

WHATSAPP-

MATHS SCIENCE SOCIAL TEST PAPERS & NOTES UPLOAD IN MY PAID GROUP

FEES RS.3000 FOR 1 YEAR

CLASS 12 SCI

MATHS PHY CHEM BIOLOGY TEST PAPERS & NOTES UPLOAD IN MY PAID GROUP

FEES RS.3000 FOR 1 YEAR

NEET PCB JEE PCM

ACCOUNTS BST ECO &
MATHS TEST PAPERS &
NOTES UPLOAD IN MY
PAID GROUP

FEES RS.4000 FOR 1 YEAR FOR CLASS 12

FEES RS.2000 FOR 1 YEAR FOR CLASS 11

RAVI TEST PAPERS & NOTES, WHATSAPP – 8056206308
300 TO 500 PAPERS UPLOAD IN 1 YEAR. JOIN GROUP AS EARLY AS POSSIBLE

UPLOAD FREE DAILY PRACTICE PAPERS IN MY WEBSITES

www.ravitestpapers.com and www.ravitestpapers.in