MATHEMATICS BASIC 2022 ■

TERM-1

SECTION - A

16 Marks

	(Q. No. 1 to 20 are of 1 r	nark each. /	Attempt any 16 from Q.	1 to 20.)	
1. HCF of 92 and (a) 4 (c) 23	152 is: (b) 19 (d) 57	1	(a) 90° (c) 60°	(b) 50° (d) 30°	1
	BC, AD = 4 cm, DB = 6 of length of EC is:	cm and		olynomial having sur eroes as 5 and 0 respec	
A			(a) $x^2 + 5x$	(b) $2x(x-5)$	
4 cm /	5 cm		(c) $5x^2 - 1$	(d) $x^2 - 5x + 5$	1
D	E		9. If P(E) = 0.65, th	nen the value of P(not E) is:
6 cm			(a) 1.65	(b) 0.25	
9 6/11/			(c) 0.65	(d) 0.35	1
В	→		_	ΔDEF ~ ΔPQR. EF:QR =	
(a) 7 cm	(b) 6.5 cm			$r(\Delta DEF)$: $ar(\Delta PQR)$ is: **	•
(c) 7.5 cm	(d) 8 cm	1	(a) 4:9	(b) 4:3	1
	, for which the pair of		(c) 9:2	(d) 9:4	1
no solution, is:	y - 4 = 0, $2x + ky - 3 =$	0 have	11. Zeroes of a qua	adratic polynomial x^2 –	5x + 6
(a) 0 (c) 6	(b) 2 (d) 8	1	(a) -5,1	(b) 5, 1	
* *	an ² 45° – cos ² 60°) is:	_	(c) 2, 3	(d) -2, -3	1
(a) $\frac{1}{2}$	(b) $\frac{1}{4}$		57		
(c) $\frac{2}{3}$	(d) $\frac{3}{4}$	1	12. $\frac{57}{300}$ is a:**		
5. A point (x, 1) i (2, 0). The valu	s equidistant from (0,	0) and	(a) non-termin decimal exp	ansion.	_
(a) 1	(b) 0			decimal expansion	after
(c) 2	(d) $\frac{1}{2}$	1	2 places of (decimals. 1 decimal expansion	after
6. Two coins	2	r. The	3 places of	decimals.	
probability of g	getting exactly one hed	ıd is:		ating but repeated d	
(a) $\frac{1}{4}$	(b) $\frac{1}{2}$		expansion.		1
(c) $\frac{3}{4}$	(d) 1	1		rectangle whose lengtl twice its breadth (b) is	
7. A circular arc	of length 22 cm subte	nds an		ar equations representi	
	centre of the circle of	radius	above informat	ion is:	
21 cm. The val	ue of g is:		(a) $l + 4 = 2b$	(b) $l - b = 4$	
	A		2(l+b)=14	2(l+b)=14	
,	21 cm		(c) $l = 2b + 4$	(d) $l = 2b + 4$	
			l+b=14	2(l+b)=14	1

22 cm

(a) 5.213213213... (b) 5.2131313...

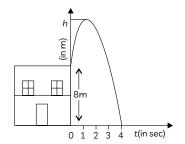
(c) 5.213 (d) $\frac{5213}{1000}$ 1

15.	The ratio in which the line segment joining (4, –8) is:	g the points (4, 6)		(0, 6) B		
	(a) 1:2	(b) 3:4				
	(c) 4:3	(d) 1:1	1	5		
16.	Which of the following (a) sec 0°	(b) cosec 90°		D		
	(c) tan 90°	(d) cot 90°	1		(4, 0)	
17.	In the given figure semi-circle at C and AB = 28 cm, what is circle?	its diameter AB at	O. If	$x' \leftarrow \bigcirc y'$ (a) $\sqrt{52}$ units	(b) 5 units	
		С		(c) 25 units	(d) 10 units	1
				(a) 0	d triangle PQR, $\angle Q$ value of tan P – $\cos^2 \frac{1}{2}$ (b) 1 (d) $\frac{3}{2}$	R is:
	A	O B		(c) $\frac{1}{2}$	(d) ${2}$	1
	(a) 14 cm	(b) 28 cm		20. If $\tan \theta = \frac{2}{3}$, then	_	
	(c) 7 cm	(d) $\frac{7}{2}$ cm	1	(a) $\frac{\sqrt{13}}{3}$	(b) $\frac{\sqrt{5}}{3}$	
18.	The vertices of O(0, 0), A(4, 0) and Edrawn on OB. The le	3(0, 6). The median <i>i</i>		(c) $\sqrt{\frac{13}{3}}$	(d) $\frac{3}{\sqrt{13}}$	1
	arawii on ob. me te	rigeri AD 13.		·	V = 5	
	arawn on ob. me te		ECTIO	N - B	·	Marks
		SI		N - B ttempt any 16 from Q. 2	16	Marks
24	(Q. No.	SI 21 to 40 are of 1 ma	rk each. Ai	ttempt any 16 from Q. 2	16 1 to 40.)	Marks
21.	(Q. No.	SI 21 to 40 are of 1 ma he sector of a circ	rk each. Ai		16 1 to 40.) (b) 0.80	Marks
21.	(Q. No.	SI 21 to 40 are of 1 ma he sector of a circ	rk each. Ai	ttempt any 16 from Q. 2	16 1 to 40.)	Marks
21.	(Q. No. The perimeter of the radius 14 cm and ce	SI 21 to 40 are of 1 ma he sector of a circ	rk each. Ai	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded	16 1 to 40.) (b) 0.80 (d) 49/100	1 : O. The d inner
21.	(Q. No. The perimeter of the radius 14 cm and ce	SI 21 to 40 are of 1 ma he sector of a circ ntral angle 45° is:	rk each. Ai	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded	(b) 0.80 (d) 49/100 circles are centred at region, if outer an and 7 cm respectively	1 : O. The d inner
21.	(Q. No. The perimeter of the radius 14 cm and ce	21 to 40 are of 1 ma he sector of a circ ntral angle 45° is: 5° 14 cm	rk each. Ai	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded	$\begin{array}{c} \textbf{16} \\ 1 \text{ to } 40.) \\ \textbf{(b) } 0.80 \\ \textbf{(d) } \frac{49}{100} \\ \\ \textbf{Sircles are centred at region, if outer an} \end{array}$	1 : O. The d inner
21.	(Q. No. The perimeter of the radius 14 cm and ce	21 to 40 are of 1 ma he sector of a circ intral angle 45° is:	rk each. Ai	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded	(b) 0.80 (d) 49/100 circles are centred at region, if outer an and 7 cm respectively	1 : O. The d inner
	(Q. No. The perimeter of the radius 14 cm and ce	21 to 40 are of 1 mache sector of a circuntral angle 45° is: (b) 22 cm (d) 39 cm d balls, 8 green balls all is drawn at randit is blue ball is:	rk each. Ai le of 1 s and	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded	(b) 0.80 (d) 49/100 circles are centred at region, if outer an and 7 cm respectively	1 : O. The d inner
	(Q. No. The perimeter of the radius 14 cm and certains 14 cm and certains 14 cm (a) 11 cm (c) 28 cm A bag contains 16 re 6 blue balls. One both the probability that	21 to 40 are of 1 mache sector of a circuntral angle 45° is: (b) 22 cm (d) 39 cm d balls, 8 green balls all is drawn at randit is blue ball is:	rk each. Ai le of 1 s and	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded	(b) 0.80 (d) 49/100 circles are centred at region, if outer an and 7 cm respectively	1 : O. The d inner
	(Q. No. The perimeter of the radius 14 cm and certains 14 cm and certains 14 cm (a) 11 cm (c) 28 cm A bag contains 16 re 6 blue balls. One balls that (a) $\frac{1}{6}$	21 to 40 are of 1 ma the sector of a circ intral angle 45° is: (b) 22 cm (d) 39 cm d balls, 8 green balls all is drawn at randit is blue ball is: (b) $\frac{1}{5}$	rk each. Ai le of 1 s and	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded radii are 14 cm of	(b) 0.80 (d) $\frac{49}{100}$ circles are centred at region, if outer an and 7 cm respectively	1 : O. The d inner
	(Q. No. The perimeter of the radius 14 cm and certains 14 cm and certains 14 cm (a) 11 cm (c) 28 cm A bag contains 16 re 6 blue balls. One both the probability that	21 to 40 are of 1 mache sector of a circuntral angle 45° is: (b) 22 cm (d) 39 cm d balls, 8 green balls all is drawn at randit is blue ball is:	rk each. Ai le of 1 s and	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded radii are 14 cm of the concentric of a	(b) 0.80 (d) $\frac{49}{100}$ circles are centred at region, if outer an and 7 cm respectively 7 cm 0 14 cm (b) 154 cm ² (d) 308 cm ²	1 : O. The d inner y, is:
22.	(Q. No. The perimeter of the radius 14 cm and certains 14 cm and certains 14 cm and certains 14 cm and certains 16 reference 6 blue balls. One but the probability that (a) $\frac{1}{6}$ (c) $\frac{1}{30}$ If $\sin \theta - \cos \theta = 0$, the probability that $\cos \theta = 0$ and $\cos \theta = 0$.	21 to 40 are of 1 main the sector of a circumtral angle 45° is: (b) 22 cm (d) 39 cm d balls, 8 green balls all is drawn at randit is blue ball is: (b) $\frac{1}{5}$ (d) $\frac{5}{6}$	rk each. Ai le of 1 s and dom.	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded radii are 14 cm of area of shaded radii area of shaded radi	(b) 0.80 (d) $\frac{49}{100}$ circles are centred at region, if outer an and 7 cm respectively 7 cm 0 14 cm (b) 154 cm ² (d) 308 cm ²	1 : O. The d inner y, is:
22.	(Q. No. The perimeter of the radius 14 cm and certains 14 cm and certains 14 cm and certains 14 cm and certains 16 cm (c) 28 cm A bag contains 16 cm 6 blue balls. One balls that (a) $\frac{1}{6}$ (c) $\frac{1}{30}$	21 to 40 are of 1 main the sector of a circumtral angle 45° is: (b) 22 cm (d) 39 cm d balls, 8 green balls all is drawn at randit is blue ball is: (b) $\frac{1}{5}$ (d) $\frac{5}{6}$	rk each. Ai le of 1 s and dom.	(a) 0.02 (c) 0.98 25. Two concentric of area of shaded radii are 14 cm of the concentric of a	(b) 0.80 (d) $\frac{49}{100}$ circles are centred at region, if outer an and 7 cm respectively 7 cm 0 14 cm (b) 154 cm ² (d) 308 cm ²	1 : O. The d inner y, is:

(c) $\frac{2}{\sin^2\theta}$

(d) $2 sec^2 \theta$

1


24. The probability of happening of an event is 0.02. The probability of not happening of the

event is:

27.	The origin divides joining the points A(ratio:				e mid-point of nts (–3, 9) and (line segment joining (-6, -4) is:	g the
	(a) 3:1 (c) 2:3	(b) 1:3 (d) 1:1	1	(a)	$\left(\frac{-3}{2}, \frac{-13}{2}\right)$	(b) $\left(\frac{9}{2}, \frac{-5}{2}\right)$	
28.	The perpendicular b A(-8, 0) and B(8, 0) (0, <i>k</i>). The value of <i>k</i>	passes thro			$\left(\frac{-9}{2},\frac{5}{2}\right)$	()	1
	(a) 0 only(b) 0 or 8 only(c) any real number			36. The	e decimal expar	nsion of $\frac{13}{2 \times 5^2 \times 7}$ is:	**
20	(d) any non-zero rec		1	(b)	non-terminatin	er 1 decimal place. g and non-repeating	•
29.	Which of the for statement? (a) Two congruent			• •	_	er 2 decimal places. g but repeating.	1
	similar. (b) Two similar figur (c) All rectangles ar	es are alway			∆ABC, DE BC : BC is equal to	, AD = 2 cm, DB = 3 :	3 cm,
	(d) The polygons h sides are similar	aving same	number of		2cm /	Â	
30.	The solution of the $x = -5$ and $y = 6$ is:	•	ar equations		D	E	
	(a) (-5, 6) (c) (0, 6)	(b) (-5, 0) (d) (0, 0)	1		3cm/		
31.	A circle of radius 3 Which of the follow circle?				В	c	
	(a) (-1, -1)	(b) (0, 3)		(a)	2:3	(b) 2:5	
	(c) (1, 2)	(d) (3, 1)	1	(c)	1:2	(d) 3:5	1
32.	The value of k for equations $3x + 5y =$	8 and $kx + 1$		38. The is:	e (HCF × LCM) fo	or the numbers 50 ar	nd 20
	infinitely many solu (a) 3	tions, is: (b) 9		(a)	1000	(b) 50	
	(c) 5	(d) 15	1	(c)	100	(d) 500	1
33.	HCF of two consecut	tive even nui (b) 1	mbers is:		which natural	number <i>n</i> , 6 ⁿ ends	with
	(c) 2	(d) 4	1	(a)	6	(b) 5	
34.	The zeroes of	auadratic	polynomial	(c)	0	(d) None of these	1
	$x^{2} + 99x + 127$ are: (a) both negative		. 3	•		n A) (1 – sin A) is equ	al to:
	(b) both positive(c) one positive and	one negativ	a	(a)	$\frac{\cos^2 A}{\sec^2 A}$	(b) 1	
	(d) reciprocal of eac	_	1	(c) (0	(d) 2	1
	., .		SECTIO				arks
	(Attempt an	y 4 Questions	from Q.No. 41 to	45 and an	other 4 from Q.N		
	ASE STUDY 1	-	-			•	onto d

Sukriti throws a ball upwards, from a rooftop which is 8 m high from ground level. The ball reaches to some maximum height and then returns and hit the ground.

If height of the ball at time t (in sec) is represented by h(m), then equation of its path is given as $h = -t^2 + 2t + 8$.

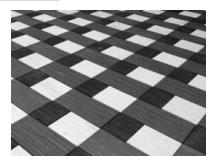
Based on above information, answer the following question:

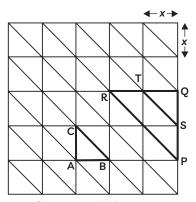
- 41. The maximum height achieved by ball is:
 - (a) 7 m
- (b) 8 m
- (c) 9 m
- (d) 10 m

1

- **42.** The polynomial represented by above graph is:
 - (a) linear polynomial
 - (b) quadratic polynomial
 - (c) constant polynomial
 - (d) cubic polynomial

-


- **43.** Time taken by ball to reach maximum height is:
 - (a) 2 sec
- (b) 4 sec
- (c) 1 sec
- (d) 2 min


1

1

- **44.** Number of zeroes of the polynomial whose graph is given, is:
 - (a) 1
- (b) 2
- (c) 0
- (d) 3
- 45. Zeroes of the polynomial are:
 - (a) 4
- (b) -2, 4
- (c) 2, 4
- (d) 0, 4

CASE STUDY 2

Diagrammatic View

Quilts are available in various colours and design. Geometric design includes shapes like squares, triangles, rectangles, hexagons etc.

One such design is shown above. Two triangles are highlighted, $\triangle ABC$ and $\triangle PQR$.

Based on above information, answer the following questions:

- **46.** Which of the following criteria is not suitable for \triangle ABC to be similar to \triangle QRP?
 - (a) SAS
- (b) AAA
- (c) SSS
- (d) RHS
- 1
- **47.** If each square is of length *x* unit, then length BC is equal to:
 - (a) $x\sqrt{2}$ unit
- (b) 2x unit
- (c) $2\sqrt{x}$ unit
- (d) $x\sqrt{x}$ unit
- 1

1

1

- **48.** Ratio BC : PR is equal to:
 - (a) 2:1
- (b) 1:4
- (c) 1:2
- (d) 4:1
- **49.** ar(PQR) : ar(ABC) is equal to:**
 - (a) 2:1
- (b) 1:4
- (c) 4:1
- (d) 1:8
- **50.** Which of the following is not true?
 - (a) ΔTQS ~ ΔPQR
 - (b) \triangle CBA ~ \triangle STQ
 - (c) ΔBAC ~ ΔPQR
 - (d) Δ PQR ~ Δ ABC

1

TERM-2

SECTION - A

12 Marks

(Question Numbers 1 to 6 carry 2 marks each.)

1. In an AP, if a = 50, d = -4 and $S_n = 0$, then find the value of n.

OR

Find the sum of the first twelve 2-digit multiples of 7, using an AP.

A solid metallic sphere of radius 3 cm is melted and recast into the shape of a solid cylinder of radius 2 cm. Find the height of the cylinder.

3. Find the nature of the roots of the quadratic equation $x^2 - 5x + 9 = 0$.

OF

Write a quadratic equation with roots - 3 and 5.

4. Find the mode of the following frequency distribution:

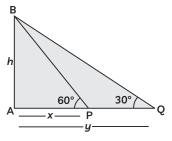
Class	Frequency
0 - 20	8
20 - 40	7
40 - 60	12
60 – 80	5
80 - 100	3

5. Solve the quadratic equation $2x^2 - 5x - 1 = 0$ for x.

6. In figure, if tangents PA and PB drawn from a point P to a circle with centre O, are inclined to each other at an angle of 70°, then find the measure of ∠POA.

2

SECTION - B


12 Marks

(Question Numbers from 7 to 10 carry 3 marks each.)

7. The frequency distribution given below shows the weight of 40 students of a class. Find the median weight of the students.

Weight (in kg)	Number of Students
40 – 45	9
45 – 50	5
50 – 55	8
55 – 60	9
60 – 65	6
65 – 70	3

the base of the tower respectively and in the same straight line with it, are 60° and 30°, respectively, Prove that $h^2 = xy$.

3

8. Draw a circle of radius 4 cm. Construct a pair of tangents to the circle from a point 6 cm away from its centre.**

OR

Draw a line segment PQ = 7.5 cm. Divide it in the ratio 3:1.**

9. In figure, the angles of elevation of the top of a tower AB of height 'h' m, from two points P and Q at a distance of x m and y m from 10. The following table shows the age of patients admitted in a hospital during a particular week:

Age (in years)	Number of Patients
5 – 15	5
15 – 25	12
25 – 35	20
35 – 45	24
45 – 55	15
55 – 65	4

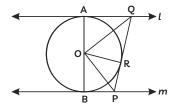
Find the mean age of the patients.

3

SECTION - C

3

16 Marks


(Question Numbers from 11 to 14 carry 4 marks each.)

11. A spherical glass vessel has a neck 8 cm long and 1 cm in radius. The radius of the spherical part is 9 cm. Find the amount of water (in litres) it can hold, when filled completely.

OR

From a solid cylinder, whose height is 2.4 cm. and diameter 1.4 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid.

12. In figure, the tangent l is parallel to the tangent m drawn at points A and B respectively to a circle centred at O. PQ is a tangent to the circle at R. Prove that ∠POQ = 90°.

CASE STUDY 1

13. Do you know old clothes which are thrown as waste not only fill the landfill site but also produce very harmful greenhouse gas. So, it is very important that we reuse old clothes in whatever way we can.

The picture given below on the right, shows a footmat (rug) made out of old t-shirts yarn. Observing the picture, you will notice that a number of stitches in circular rows are making a pattern: 6, 12, 18, 24, ...

Based on the above information, answer the following questions:

- (A) Check whether the given pattern forms an AP. If yes, find the common difference and the next term of the AP.
- (B) Write the nth term of the AP. Hence, find the number of stitches in the 10th circular row.

CASE STUDY 2

14. The following TV Tower was built in 1988 and is located in Pitampura, Delhi. It has an observation deck. Observe the picture given below:

The TV Tower stands vertically on the ground. From a point 'A' on the ground, the angle of elevation of top of the tower (point 'B') is 60°. There is a point 'C' on the tower which is 78 m (approx.) above the ground.

The angle of elevation of the point C from point A is found to be 30°.

- (A) Draw a well-labelled figure, based on the information given above.
- (B) Find the height of the tower and the distance of the tower from point A. 2