All India 2022

CBSE Board Solved Paper Term-I

Time Allowed: 90 Minutes Maximum Marks: 40

General Instructions:

- (i) This question paper comprises 50 questions out of which 40 questions are to be attempted as per instructions. All questions carry equal marks.
- (ii) The question paper consists of three Sections Section A, B and C.
- (iii) Section A contains 20 questions Attempt any 16 questions from Q. No. 1 to 20.
- (iv) Section B also contains 20 questions. Attempt any 16 questions from Q. No. 21 to 40.
- (v) Section C contains 10 questions including one Case Study. Attempt any 8 from Q. No. 41 to 50.
- (vi) There is only one correct option for every Multiple Choice Question (MCQ). Marks will not be awarded for answering more than one option.
- (vii) There is no negative marking.

SECTION - A

In this section, attempt any 16 questions out of questions 1-20. Each question is of one mark.

- Differential of $\log [\log(\log x^5)]$ w.r.t. x is 1.
 - $\frac{5}{x \log(x^5) \log(\log x^5)} \text{ (b)} \quad \frac{5}{x \log(\log x^5)}$
 - (c) $\frac{5x^4}{\log(x^5)\log(\log x^5)}$ (d) $\frac{5x^4}{\log x^5\log(\log x^5)}$
- The number of all possible matrices of order 2×3 with 2. each entry 1 or 2 is
 - (a) 16
- (b) 6
- (c) 64
- A function f: R \rightarrow R is defined as $f(x) = x^3 + 1$. Then the function has
 - (a) on minimum value
 - (b) no maximum value
 - both maximum and minimum values
 - (d) neither maximum value nor minimum value
- If $\sin y = x \cos (a + y)$, then $\frac{dx}{dy}$ is
 - (a) $\frac{\cos a}{\cos^2(a+y)}$ (b) $\frac{-\cos a}{\cos^2(a+y)}$

- The points on the curve $\frac{x^2}{9} + \frac{y^2}{25} = 1$, where tangent is parallel to x-axis are

 - (a) $(\pm 5,0)$ (b) $(0,\pm 5)$ (c) $(0,\pm 3)$ (d) $(\pm 3,0)$
- Three points P(2x, x + 3), Q(0, x) and R(x + 3, x + 6) are 6. collinear, then x is equal to
 - (a) 0
- (b) 2
- (c) 3
- (d) 1
- The principal value of $\cos^{-1}\left(\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is
 - (a) $\frac{\pi}{12}$ (b) π (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$

- If $(x^2 + y^2)^2 = xy$, then $\frac{dy}{dx}$ is
 - (a) $\frac{y+4x(x^2+y^2)}{4y(x^2+y^2)-x}$ (b) $\frac{y-4x(x^2+y^2)}{x+4(x^2+y^2)}$
 - (c) $\frac{y-4x(x^2+y^2)}{4y(x^2+y^2)-x}$ (d) $\frac{4y(x^2+y^2)-x}{y-4x(x^2+y^2)}$
- If a matrix A is both symmetric and skew symmetric, then A is necessarily a
 - Diagonal matrix
- (b) Zero square matrix
- Square matrix
- (d) Identity matrix

- 10. Let set $X = \{1, 2, 3\}$ and a relation R is defined in X as : R $= \{(1, 3), (2, 2), (3, 2)\},$ then minimum ordered pairs which should be added in relation R to make it reflexive and symmetric are
 - (a) $\{(1,1),(2,3),(1,2)\}$
 - (b) $\{(3,3),(3,1),(1,2)\}$
 - (c) $\{(1,1),(3,3),(3,1),(2,3)\}$
 - (d) $\{(1,1),(3,3),(3,1),(1,2)\}$
- 11. A linear programming problem is as follows:

Minimise

$$Z = 2x + y$$

Subject to the constraints $x \ge 3, x \le 9, y \ge 0$

$$x \ge 3, x \le 9, y \ge 0$$

 $x - y \ge 0, x + y \le 14$

The feasible region has

- (a) 5 corner points including (0, 0) and (9, 5)
- (b) 5 corner points including (7, 7) and (3, 3)
- (c) 5 corner points including (14, 0) and (9, 0)
- (d) 5 corner points including (3, 6) and (9, 5)
- The function $f(x) = \begin{cases} \frac{e^{3x} e^{-5x}}{x}, & \text{if } x \neq 0\\ k, & \text{if } x = 0 \end{cases}$

is continuous at x = 0 for the value of k, is

- (b) 5
- (c) 2
- (d) 8
- 13. If C_{ii} denotes the cofactor of element p_{ii} of the matrix

$$P = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & 2 & 4 \end{bmatrix}$$
, then the value of C_{31} . C_{23} is

- (b) 24

- **14.** The function $y = x^2 e^{-x}$ is decreasing in the interval
 - (a) (0,2)
- (b) $(2, \infty)$
- (c) $(-\infty, 0)$
- (d) $(-\infty,0)\cup(2,\infty)$
- If $R = \{(x, y): x, y \in Z, x^2 + y^2 \le 4\}$ is a relation in set Z, then domain of *R* is
 - (a) $\{0, 1, 2\}$
- (b) $\{-2, -1, 0, 1, 2\}$
- (c) $\{0, -1, -2\}$
- (d) $\{-1, 0, 1\}$
- The system of linear equations

5x + ky = 5, 3x + 3y = 5

will be consistant

- (a) $k \neq -3$
- (b) k = -5
- (c) k = 5
- (d) $k \neq 5$
- The equation of the tangent to the curve $y(1 + x^2)$ = 2 - x, where it crosses the x-axis is
 - (a) x 5y = 2
- (b) 5x y = 2
- (c) x + 5y = 2
- (d) 5x + y = 2
- **18.** If $\begin{bmatrix} 3c+6 & a-d \\ a+d & 2-3b \end{bmatrix} = \begin{bmatrix} 12 & 2 \\ -8 & -4 \end{bmatrix}$ are equal, then value of

ab - cd is

(a) 4

- (b) 16
- (c) -4
- (d) -16

- 19. The principal value of $\tan^{-1} \left(\tan \frac{9\pi}{8} \right)$ is

- (a) $\frac{\pi}{8}$ (b) $\frac{3\pi}{8}$ (c) $-\frac{\pi}{8}$ (d) $-\frac{3\pi}{8}$
- For two matrices $P = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ and $Q^T = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$

P - Q is

(a)
$$\begin{bmatrix} 2 & 3 \\ -3 & 0 \\ 0 & -3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}$

(b)
$$\begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 4 & 3 \\ 0 & -3 \\ -1 & -2 \end{bmatrix}$$

$$\text{(d)} \quad \begin{bmatrix} 2 & 3 \\ 0 & -3 \\ 0 & -3 \end{bmatrix}$$

SECTION - B

In this section, attempt any 16 questions out of questions 21-40. Each question is of one mark.

- The function $f(x) = 2x^3 15x^2 + 36x + 6$ is increasing in the interval
 - (a) $(-\infty,2)\cup(3,\infty)$
- (b) $(-\infty, 2)$
- (c) $(-\infty, 2] \cup [3, \infty)$
- (d) $[3, \infty)$
- 22. If $x = 2\cos\theta \cos 2\theta$ and $y = 2\sin\theta \sin 2\theta$, then $\frac{dy}{dx}$ is

(a)
$$\frac{\cos\theta + \cos 2\theta}{\sin\theta - \sin 2\theta}$$

(b)
$$\frac{\cos\theta - \cos 2\theta}{\sin 2\theta - \sin \theta}$$

(c)
$$\frac{\cos\theta - \cos 2\theta}{\sin\theta - \sin 2\theta}$$

(d)
$$\frac{\cos 2\theta - \cos \theta}{\sin 2\theta + \sin \theta}$$

- **23.** What is the domain of the function $\cos^{-1}(2x-3)$?
 - (a) [-1,1] (b) (1,2)
- - (c) (-1,1) (d) [1,2]
- **24.** A matrix $A = [a_{ii}]_{3 \times 3}$ is defined by

$$a_{ij} = \begin{cases} 2i + 3j & , i < j \\ 5 & , i = j \\ 3i - 2j & , i > j \end{cases}$$

The number of elements in A which are more than 5, is (a) 3 (b) 4 (c) 5 (d) 6

25. If a function f defined by

$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{, if } x \neq \frac{\pi}{2} \\ 3 & \text{, if } x = \frac{\pi}{2} \end{cases}$$

is continuous at $x = \frac{\pi}{2}$, then the value of k, is

- (b) 3
- (c) 6

		0	1	1
26.	For the matrix $X =$	1	0	$1 (X^2 - X) $ is
		1		

- (a) 2*I*
- (b) 3*I*
- (c) *I*
- (d) 5*I*
- 27. Let $X = \{x^2 : x \in N\}$ and the function $f: N \to X$ is defined by $f(x) = x^2, x \in \mathbb{N}$. Then this function is
 - (a) injective only
- (b) not bijective
- (c) surjective only
- (d) bijective
- 28. The corner points of the feasible region for a linear programming problem are P(0, 5), Q(1, 5), R(4, 2) and S(12, 0). The minimum value of the objective function Z = 2x + 5y is at the point
 - (a) *P*

(b) Q

(c) R

- (d) S
- The equation of the normal to the curve $ay^2 = x^3$ at the 29. point (am^2, am^3) is
 - (a) $2v 3mx + am^3 = 0$
 - (b) $2x + 3my 3am^4 am^2 = 0$
 - (c) $2x + 3mv + 3am^4 2am^2 = 0$
 - (d) $2x + 3my 3am^4 2am^2 = 0$
- **30.** If A is a square matrix of order 3 and |A| = -5, then | adj A | is
 - (a) 125
- (b) -25 (c) 25

- 31. The simplest form of $\tan^{-1} \left[\frac{\sqrt{1+x} \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right]$ is
- (b) $\frac{\pi}{4} + \frac{x}{2}$
- (c) $\frac{\pi}{4} \frac{1}{2}\cos^{-1}x$ (d) $\frac{\pi}{4} + \frac{1}{2}\cos^{-1}x$
- 32. If for the matrix $A = \begin{bmatrix} \alpha & -2 \\ -2 & \alpha \end{bmatrix}$, $|A^3| = 125$, then the value
 - of α is
 - (a) ± 3
- (b) -3
- (c) ± 1
- 33. If $y = \sin(m \sin^{-1} x)$, then which one of the following equations is true?
 - (a) $(1-x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} + m^2y = 0$
 - (b) $(1-x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} + m^2y = 0$
 - (c) $(1+x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} m^2y = 0$
 - (d) $(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} m^2x = 0$
- **34.** The principal value of $[\tan^{-1}\sqrt{3} \cot^{-1}(-\sqrt{3})]$ is

- (a) π (b) $-\frac{\pi}{2}$ (c) 0 (d) $2\sqrt{3}$
- **35.** The maximum value of $\left(\frac{1}{x}\right)^x$ is
- (a) $e^{1/e}$ (b) e (c) $\left(\frac{1}{e}\right)^{1/e}$ (d) e^{e}
- **36.** Let matrix $X = [x_{ij}]$ is given by $X = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}$. Then the

matrix Y = $[m_{ij}]$, where m_{ij} = Minor of x_{ij} , is

- (a) $\begin{bmatrix} 7 & -5 & -3 \\ 19 & 1 & -11 \\ -11 & 1 & 7 \end{bmatrix}$ (b) $\begin{bmatrix} 7 & -19 & -11 \\ 5 & -1 & -1 \\ 3 & 11 & 7 \end{bmatrix}$
- (c) $\begin{bmatrix} 7 & 19 & -11 \\ -3 & 11 & 7 \\ -5 & -1 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 7 & 19 & -11 \\ -1 & -1 & 1 \\ -3 & -11 & 7 \end{bmatrix}$
- A function $f: R \to R$ defined by $f(x) = 2 + x^2$ is
 - (a) not one-one
 - (b) one-one
 - (c) not onto
 - (d) neither one-one nor onto
- A linear programming problem is as follow: maximise / minimise objective function Z = 2x - y + 5Subject to the constraints

$$3x + 4y \le 60$$

$$x + 3y \le 30$$

$$x \ge 0, y \ge 0$$

If the corner points of the feasible region are A(0, 10), B(12, 6), C(20, 0) and O(0, 0), then which of the following is true?

- (a) Maximum value of Z is 40
- (b) Minimum value of Z is -5
- (c) Difference of maximum and minimum values of Z is 35
- (d) At two corner points, value of Z are equal
- If x = -4 is a root of $\begin{vmatrix} x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x \end{vmatrix} = 0$, then the sum of the

other two roots is

(a) 4

(b) -3

(c) 2

- 40. The absolute maximum value of the function

$$f(x) = 4x - \frac{1}{2}x^2$$
 in the interval $\left[-2, \frac{9}{2}\right]$ is

(a) 8

(b) 9

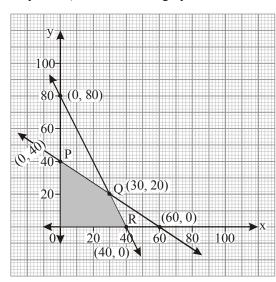
(c) 6

(d) 10

SECTION - C

Attempt any 8 questions out of the questions 41-50. Each question is of one mark.

- In a sphere of radius r, a right circular cone of height h, having maximum curved surface area is inscribed. The expression for the square of curved surface of cone is
 - (a) $2\pi^2 rh (2rh + h^2)$ (b) $\pi^2 hr (2rh + h^2)$
- - (c) $2\pi^2 r (2rh^2 h^3)$
- (d) $2\pi^2 r^2 (2rh h^2)$
- The corner points of the feasible region determined by a set of constraints (linear inequalities) are P(0, 5), Q(3, 5), R(5, 0) and S(4, 1) and the objective function is Z = ax + 2by where a, b > 0. The condition on a and b such that the maximum Z occurs at Q and S is
 - (a) a 5b = 0
- (b) a-3b=0
- (c) a-2b=0
- (d) a 8b = 0
- 43. If curves $y^2 = 4x$ and xy = c cut at right angles, then the value of c is
 - (a) $4\sqrt{2}$
- (b) 8
- (c) $2\sqrt{2}$
- (d) $-4\sqrt{2}$
- The inverse of the matrix $X = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ is
 - (a) $24\begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$ (b) $\frac{1}{24}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - (c) $\frac{1}{24}\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
- For an L.P.P. the objective function is Z = 4x + 3y and the feasible region determined by a set of constraints (linear inequations) is shown in the graph.



Which one of the following statements is true?

- Maximum value of Z is at R.
- Maximum value of Z is at Q.
- Value of Z at R is less than the value at P.
- Value of Z at Q is less than the value at R.

Case Study

In a residential society comprising of 100 houses, there were 60 children between the ages of 10-15 years. They were inspired by their teachers to start composting to ensure that biodegradable waste is recycled. For this purpose, instead of each child doing it for only his/ her house, children convinced the Residents Welfare Association to do it as a society initiative. For this they identified

a square area in the local park. Local authorities charged amount of ₹ 50 per square metre for space so that there is no misuse of the space and Resident Welfare Association takes it seriously. Association hired a labourer for digging out 250 m³ and he charged $\stackrel{?}{\sim} 400 \times (depth)^2$. Association will like to have minimum cost.

Based on this information, answer the any 4 of the following questions.

Let side of square plot is x m and its depth is h metres, then cost c for the pit is

(a)
$$\frac{50}{h} + 400 h^2$$

(a)
$$\frac{50}{h} + 400 h^2$$
 (b) $\frac{12500}{h} + 400 h^2$

(c)
$$\frac{250}{h} + h^2$$

(c)
$$\frac{250}{h} + h^2$$
 (d) $\frac{250}{h} + 400 h^2$

- 47. Value of h (in m) for which $\frac{dc}{dh} = 0$ is
 - (a) 1.5
- (b) 2
- (c) 2.5

- (d) 3
- 48. $\frac{d^2c}{dh^2}$ is given by

(a)
$$\frac{25000}{h^3} + 800$$
 (b) $\frac{500}{h^3} + 800$

(b)
$$\frac{500}{L^3} + 800$$

(c)
$$\frac{100}{h^3} + 800$$
 (d) $\frac{500}{h^3} + 2$

(d)
$$\frac{500}{h^3} + 2$$

- Value of x (in m) for minimum cost is
 - (a)

- (b) $10\sqrt{\frac{5}{3}}$
- (c) $5\sqrt{5}$
- (d) 10
- Total minimum cost of digging the pit (in ₹) is
 - 4100 (a)
- (b) 7500
- (c) 7850
- (d) 3220