All India 2021-22

CBSE Board Sample Paper Term-II

Time Allowed: 2 Hours Maximum Marks: 40

General Instructions:

- (i) This question paper contains **three** sections **A**, **B** and **C**. Each part is compulsory.
- (ii) Section-A has 6 short answer type (SA1) questions of 2 marks each.
- (iii) Section-B has 4 short answer type (SA2) questions of 3 marks each.
- (iv) Section-C has 4 long answer type questions (LA) of 4 marks each.
- (v) There is an internal choice in some of the questions.
- (vi) Question 14 is a case-based problem having 2 sub parts of 2 marks each.

SECTION - A

Question Nos. 1 to 6 carry 2 marks each.

$$1. \quad \text{Find} : \int \frac{\log x}{(1 + \log x)^2} dx$$

OR

Find:
$$\int \frac{\sin 2x}{\sqrt{9 - \cos^4 x}} dx$$

2. Write the sum of the order and the degree of the following differential equation:

$$\frac{d}{dx} \left(\frac{dy}{dx} \right) = 5$$

3. If \hat{a} and \hat{b} are unit vectors, then prove that

 $|\hat{a} + \hat{b}| = 2\cos\frac{\theta}{2}$, where θ is the angle between them.

4. Find the direction cosines of the following line:

$$\frac{3-x}{-1} = \frac{2y-1}{2} = \frac{z}{4}$$

5. A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement.

6. Two cards are drawn at random from a pack of 52 cards one-by-one without replacement. What is the probability of getting first card red and second card jack?

SECTION - B

Question Nos. 7 to 10 carry 3 marks each.

7. Find:
$$\int \frac{x+1}{(x^2+1)x} dx$$

8. Find the general solution of the following differential equation:

$$x\frac{dy}{dx} = y - x\sin\left(\frac{y}{x}\right)$$

OR

Find the particular solution of the following differential π

equation, given that y = 0 when $x = \frac{\pi}{4}$:

$$\frac{dy}{dx} + y \cot x = \frac{2}{1 + \sin x}$$

If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.

10. Find the shortest distance between the following lines:

$$\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$$

$$\vec{r} = (\hat{i} + \hat{j} + 2\hat{k}) + t(4\hat{i} + 2\hat{j} + 2\hat{k})$$

OR

Find the vector and the cartesian equations of the plane containing the point $\hat{i} + 2\hat{j} - \hat{k}$ and parallel to the lines

$$\vec{r} = (\hat{i} + 2\hat{j} + 2\hat{k}) + s(2\hat{i} - 3\hat{j} + 2\hat{k})$$
 and

$$\vec{r} = (3\hat{i} + \hat{j} - 2\hat{k}) + t(\hat{i} - 3\hat{j} + \hat{k})$$

SECTION - C

Question Nos. 11 to 14 carry 4 marks each.

- 11. Evaluate: $\int_{-1}^{2} |x^3 3x^2 + 2x| dx$
- 12. Using integration, find the area of the region in the first quadrant enclosed by the line x + y = 2, the parabola $y^2 = x$ and the x-axis.

OR

Using integration, find the area of the region

$$\{(x, y): 0 \le y \le \sqrt{3}x, x^2 + y^2 \le 4\}$$

13. Find the foot of the perpendicular from the point (1, 2, 0) upon the plane x - 3y + 2z = 9. Hence, find the distance of the point (1, 2, 0) from the given plane.

Case-Based/Data-Based:

14.

An insurance company believes that people can be divided into two classes: those who are accident prone and those who are not. The company's statistics show that an accident-prone person will have an accident at sometime within a fixed one-year period with probability 0.6, whereas this probability is 0.2 for a person who is not accident prone. The company knows that 20 percent of the population is accident prone.

Based on the above information, answer the following questions

- (a) What is the probability that a new policyholder will have an accident within a year of purchasing a policy?
- (b) Suppose that a new policyholder has an accident within a year of purchasing a policy. What is the probability that he or she is accident prone?