UPLOADING SUBJECTS - MATHS SCIENCE SOCIAL ENG

www.ravitestpapers.in

Test / Exam Name: Exponents And Powers Standard: 8th Subject: Mathematics

Instructions

- 1. FREE PDF ANSWERS AVAILABLE NOW IN MY WEBSITE www.ravitestpapers.com
- 2. IN PAID GROUP MONTHLY YOU CAN CUSTOMIZE ANY 10 TEST PAPERS ACCORDING TO YOUR REQUIRED CHAPTERS. CLASS 8TH FEES RS.1000 FOR 1 YEAR

Q1. Find the multiplicative inverse of 7^{-2} . 1 Mark

 $A 7^4$

 $B 7^3$

 $C 7^5$

 $D 7^2$ Ans:

Q2. Find the multiplicative inverse of 5⁻³. 1 Mark

 $A 5^3$

 $C 5^2$

 $A 5^3$ Ans:

Solution:

The multiplicative inverse of 5^{-3} is 5^3 .

 $5^{-3} \times 5^3 = 1$

The multiplicative inverse of 10⁵ is. Q3.

1 Mark

B 10

 $\mathbf{C} \ 10^{-5}$ Ans:

Solution:

$$10^5 \times 10^{-5} = 2^{5-5} = 10^\circ = 1$$

The value of log105 + log32 - log80 - log21 is: Q4.

1 Mark

A log4

 $B \log 3$

 $c \log 5$

 $D \log 2$

Ans: $D \log 2$

Q5. The value of $(3^4)^3$ is: 1 Mark

D None of the above.

B 3^{12} Ans:

Solution:

By law of exponent:

$$(a^{m})^{n} = a^{mn}$$

 $(3^{4})^{3} = 3^{4 \times 3}$

$$=3^{12}$$

Q6.

Ans:

 $\left(\frac{2}{3}\right)^{-5} \times \left(\frac{5}{7}\right)^{-5}$ is equal to:

1 Mark

$$\begin{array}{l} \textbf{A} \ \left(\frac{2}{3} \times \frac{5}{7}\right)^{-10} \\ \textbf{C} \ \left(\frac{2}{3} \times \frac{5}{7}\right)^{25} \end{array}$$

$$C\left(\frac{2}{3}\times\frac{5}{7}\right)^{25}$$

$$3\left(\frac{2}{3}\times\frac{5}{7}\right)^{-5}$$

$$\mathbf{D} \left(\frac{2}{3} \times \frac{5}{7} \right)^{-25}$$

 $\mathbf{B} \left(\frac{2}{3} \times \frac{5}{7} \right)^{-5}$ **Solution:**

We have:

$$\left(\frac{2}{3}\right)^{-5} \times \left(\frac{5}{7}\right)^{-5} = \left(\frac{2}{3} \times \frac{5}{7}\right)^{-5}$$

The expression, $(5^{-1} + 7^{-1} + 3^{-1})^0$ is equals to. Q7.

1 Mark

C 15⁻¹

D 1

Ans: **D** 1

 $2 \times 2 \times 2 \times 2 \times 2$ is equal to. Q8.

1 Mark

 $\mathbf{C} 2^2$

 $D 2^{5}$

- $D 2^{5}$ Ans:
- Tick (\checkmark) the correct answer the following: Q9.

1 Mark

- The value of x for which $\left(\frac{7}{12}\right)^{-4} \times \left(\frac{7}{12}\right)^{3x} = \left(\frac{7}{12}\right)^5$, is:
- **A** -1

B 1

C 2

D 3 Ans:

Solution:

$$\left(\frac{7}{12}\right)^{-4} \times \left(\frac{7}{12}\right)^{3x} = \left(\frac{7}{12}\right)^{5}$$

$$\Rightarrow \left(\frac{7}{12}\right)^{5}$$

$$=\left(\frac{7}{12}\right)^{\frac{1}{2}}$$

$$= 3x - 4 = 5$$

$$= 3x = 5 + 4 = 9$$

$$\Rightarrow x = \frac{9}{3}$$

$$\Rightarrow x = \frac{9}{3}$$

=3

Q10. Which of the following is the value of $\frac{\left(\frac{4}{5}\right)^{-9}}{\left(\frac{4}{5}\right)^{-9}}$?

$$\frac{\left(\frac{4}{5}\right)}{\left(\frac{4}{5}\right)^{-9}} = \frac{\left(\frac{4}{5}\right)^{9}}{\left(\frac{4}{5}\right)^{9}} = 1$$

Q11. Cube of $\frac{-1}{2}$ is:

1 Mark

1 Mark

B $\frac{1}{16}$

 $D = \frac{-1}{16}$

 $C - \frac{1}{8}$ Ans:

Solution:

- The cube of a number is the number raised to the power of 3. Hence the cube of $-\frac{1}{2}$ is $\frac{(-1)^3}{2^3}$
- $(2^{\circ} + 4^{-1}) \times 2^{2}$ is equal to. Q12.

1 Mark

Ans:

D 5

Solution:

$$(2^{\circ} + 4^{-1})$$

= $(1 + \frac{1}{4}) \times 4$
= $\frac{5}{4} \times 4 = 5$

Q13. The multiplicative inverse of $\frac{1}{3^2}$ is:

C 3

D $\frac{1}{3}$

Ans:

B 3^{2}

Solution:

The multiplicative inverse of $\frac{1}{3^2}$ is 3^2 .

$$rac{1}{3^2} imes 3^2=1$$

Q14.

The value of $\log_{abc}^{a^2} + \log_{abc}^{b^2} + \log_{abc}^{c^2}$ is equal to:

A b

C 1

B 2 Ans:

For any two non-zero rational nmbers a, $a^7 \div a^{12}$ is equal to: Q15.

1 Mark

1 Mark

1 Mark

A a^5

C ${f a}^{-5}$

 ${f C}~{f a}^{-5}$ Ans:

Solution:

 $a^m \div a^n = a^{m-n}$

$$a^7 \div b^{12} = a^{7-12} = a^{-5}$$

The standard form for 234000000 is: Q16.

1 Mark

A 2.34×10^8

B 0.234×10^9

C 2.34×10^{-8}

D 0.234×10^{-9}

Ans:

A 2.34×10^8

Solution:

Given,

 $234000000 = 234 \times 10^{6}$

 $= 2.34 \times 10^6$

 $= 2.34 \times 10^8$

standard form of 234000000 is 2.34×10^8 .

Q17. The number 86,800,000,000,000,000,000,000,000Kg is equals to. 1 Mark

A 8.68×10^{25} K

B $868 \times 10^{23} \text{Kg}$

C $86.8 \times 10^{-25} \text{Kg}$

D 868×10^{-23} m

Ans:

A 8.68×10^{25} K

 $(2^{-1} + 3^{-1} + 5^{-1})^0$ is equal to: Q18.

1 Mark

A 2

B 3

C 5

D 1

Ans:

Q19.

D 1

Solution:

 $(2^{-1} + 3^{-1} + 5^{-1})^0 = 1$ [::a⁰ = 1]

Simplify: $2^5 \div 2^{-6}$.

1 Mark

 $A 2^9$

 $B 2^{11}$

 $C 2^{10}$

D None of these

- 1.5×10^{11} is equal to: Q20.
 - A 150000000000 **B** 15000000000

D 500000000000

- Ans:
- A 150000000000

Solution:

- $1.5 \times 10^{11} = 150,000,000,000$
- Q21. The standard form for 0.000064 is:

1 Mark

1 Mark

1 Mark

1 Mark

1 Mark

- **A** 64×10^4
- **B** 64×10^{-4}
- **C** 6.4×10^5

C 1500000000

D 6.4×10^{-5}

- Ans:
- **D** 6.4×10^{-5}

Solution:

Given,

 $0.000064 = 0.64 \times 10^{-4}$

 $= 6.4 \times 10^{-5}$

Hence,

standard form of 0.000064 is 6.4×10^{-5} .

- Q22. $(-1)^{50}$ is equal to:
 - **A** -1

B 1

B 1 Ans:

Solution:

(-1) even natural number = 1

Q23. For which of the following is m= 8?

$$\begin{array}{l} \textbf{A} \ \left(5^m - 5^{-3}\right)/5^2 = 5^3 \\ \textbf{C} \ \left(5^m - 5^3\right)/5^2 = 5^3 \end{array}$$

$$(5^{m}-5^{3})/5^{2}=5^{3}$$

Solution:

Ans:

$$m = 8$$

$$= (5^2 - 5^{-3}/5^2 = 5$$

$$=5^{[8+(-3)]}/5^2$$

$$=5^5/5^2$$

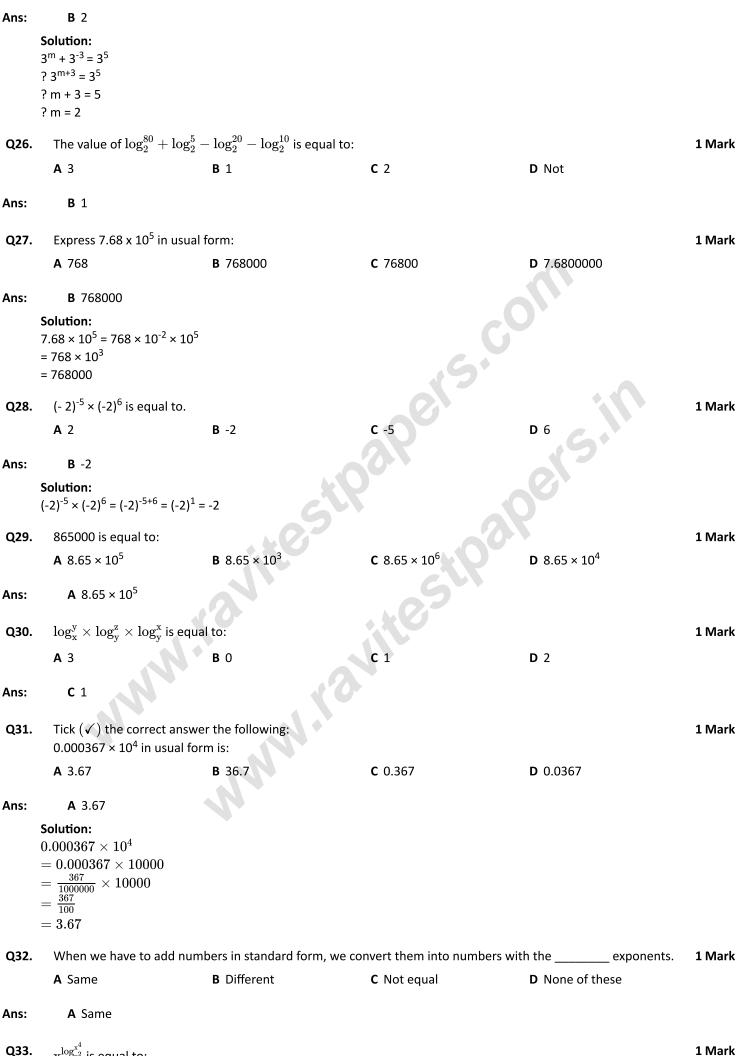
$$=5^{3}=5^{3}$$

Hence Prove.

Q24. $\left(\frac{-1}{2}\right)^5 \times \left(\frac{-1}{2}\right)^3$ is equal to:

A
$$\left(\frac{-1}{2}\right)^8$$

$$C \left(\frac{1}{4}\right)^8$$


- $\mathbf{A} \left(\frac{-1}{2} \right)^8$ Ans:
 - Solution:

We have:
$$\left(\frac{-1}{2}\right)^5 \times \left(\frac{-1}{2}\right)^3 = \left(\frac{-1}{2}\right)^{5+3}$$
 $= \left(\frac{-1}{2}\right)^8$

 $3^m + 3^{-3} = 3^5 \Rightarrow m$ is equal to: Q25.

1 Mark

C 3

A Not

Вх

 $\mathbf{C} \times^2$

 $D x^3$

 $\mathbf{C} \mathbf{x}^2$ Ans:

Q34.

Find the value of the expression a^2 for a = 10.

1 Mark

1 Mark

1 Mark

B 1

C 10

D None of these

A 100 Ans:

 $(-2)^{m+1} \times (-2)^4 = (-2)^6 \Rightarrow m =$ Q35.

B 1

C -1

D None of these.

Ans:

B 1

Solution:

$$(-2)^{m+1} \times (-2)^4 = (-2)^6$$

 $\left(\frac{1}{3}\right)^2$ is equal to: Q36.

B -9

 $D_{\frac{1}{9}}$ Ans:

Solution:

A 9

$$\left(\frac{1}{3}\right)^2 = \left(\frac{1}{3} \times \frac{1}{3}\right) = \frac{1}{9}$$

Which one of the following is the value of 1^{15} . Q37.

1 Mark

A 0

B 15

D None of these

C 1 Ans:

The value of $logm^n + logm^{n+1} + logm^{1+2n}$ is: Q38.

1 Mark

A 2logm

B nlogm

C logm

D 3logm

Ans: A 2logm

1 Mark

$$A\left(\frac{3}{4} \div \frac{5}{3}\right)^{5}$$

Ans:

 $\mathbf{A} \left(\frac{3}{4} \div \frac{5}{3} \right)^5$

Solution:

We have:
$$\left(\frac{3}{4}\right)^5 \div \left(\frac{5}{3}\right)^5 = \left(\frac{3}{4} \div \frac{5}{3}\right)^5$$

Q40. Size of a microorganism is 0.00000079m. Express it into standard form: 1 Mark

A
$$7.9 \times 10^{-3}$$

B
$$7.9 \times 10^{-7}$$

C
$$7.9 \times 10^{-9}$$

D
$$7.9 \times 10^{-5}$$

Ans:

B 7.9×10^{-7}

Solution:

 $0.00000079 = 7.9 \times 10^{-8}$

$$= 7.9 \times 10 \times 10^{-8}$$

$$= 7.9 \times 10^{-7}$$

Q41. Tick (\checkmark) the correct answer the following:

$$\left(\frac{-3}{4}\right)^2 = ?$$

A = 9

B $\frac{9}{16}$

 $c_{\frac{16}{9}}$

 $D = \frac{-16}{9}$

Ans:

B $\frac{9}{16}$

Solution:

$$\left(\frac{-3}{4}\right)^2 = \left(\frac{-3}{4}\right) \times \left(\frac{-3}{4}\right) = \frac{9}{16}$$

Q42. $2^2 \times 2^3 \times 2^4$ is equal to:

 $A 2^{24}$

B 2⁻⁵

C 2⁹

 $D_{-}2^{-9}$

Ans:

C 2⁹

Solution:

By laws of exponents:

$$a^m \times a^n = a^{m+n}$$

$$2^2 \times 2^3 \times 2^4 = 2^{2+3+4} = 2^9$$

Q43. The multiplicative inverse of $\left(-\frac{5}{9}\right)^{-99}$ is:

A $\left(-\frac{5}{9}\right)^{99}$ **C** $\left(\frac{9}{-5}\right)^{99}$

 $\mathbf{B} \left(\frac{5}{9}\right)^{99}$

 $\mathsf{D}\left(\frac{9}{5}\right)^{99}$

Ans:

$$\mathsf{A} \left(- \frac{5}{9} \right)^{99}$$

Solution:

For multiplicative inverse, a is called multiplicative inverse of b, if $a \times b = 1$.

Put b =
$$\left(-\frac{5}{9}\right)^{-99}$$

 $\Rightarrow a \times \left(\frac{-5}{9}\right)^{-99} = 1$
 $\Rightarrow a = \frac{1}{\frac{-5}{9}}$
 $\Rightarrow a = \left(-\frac{5}{9}\right)^{99}$

 $\Rightarrow a = \left(-\frac{5}{9}\right)^{99} \left[\because a^{-m} = \frac{1}{a^m} \right]$

Q44. The multiplicative inverse of 10^{-100} is:

1 Mark

1 Mark

1 Mark

1 Mark

A 10

B 100

 $C 10^{100}$

D 10⁻¹⁰⁰

Ans:

 $c 10^{100}$

Solution:

For multiplicative inverse, let a be the multiplicative inverse of 10⁻¹⁰⁰.

so,
$$a \times b = 1$$

∴
$$a \times 10^{100} = 1$$

$$\Rightarrow \mathbf{a} = \frac{1}{10^{-100}} \times \frac{1}{\frac{1}{10^{100}}} \left[\because \mathbf{a}^{-m} = \frac{1}{\mathbf{a}^{m}} \right]$$

 $=10^{100}$

Q45. Write the expression using exponents: $61 \times 61 \times 61 \times 61 \times 61$.

1 Mark

 $A 6^{12}$

 $\mathbf{B} \ 6^{13}$

 $\mathbf{C} \ 6^{14}$

 $D 6^{15}$

Ans:

 $D 6^{15}$

Q46. In standard form 21600000 is written as.

1 Mark

Ans: A 2.16×10^7

Q47. If x be any integer different from zero and m be any positive integer, then x^{-m} is equal to:

1 Mark

 $\mathbf{A} \mathbf{x}^{n}$

 $C \frac{1}{x^m}$

 $\begin{array}{c} \textbf{B} \ -x^m \\ \textbf{D} \ \frac{-1}{\mathbf{x}^m} \end{array}$

Ans: $C \frac{1}{x^m}$

Solution:

Using law of exponents, $a^{-m}=\frac{1}{a^m} \left[\because$ a is non-zero integer]

Similarly

 $\mathbf{x}^{-\mathbf{m}} = \frac{1}{\mathbf{x}^{\mathbf{m}}}$

Q48. The multiplicative inverse of 7^{-2} is:

1 Mark

A 7^2

B 7

 $c_{\frac{1}{7^2}}$

 $D \frac{1}{7}$

Ans: A 7^2

Solution:

The multiplicative inverse of any value is the one which when multiplied by the original value gives a value equal to 1.

 $7^{-2}=rac{1}{7^2}$

Hence, $7^2 imes rac{1}{7^2} = 1$

Q49. The reciprocal of $\left(\frac{2}{5}\right)^{-1}$ is

1 Mark

 $A^{\frac{2}{5}}$

В -

 $C - \frac{5}{2}$

 $D - \frac{2}{5}$

Ans: B $\frac{5}{2}$

Using law of exponents, $a^{-m} = \frac{1}{a^m}$ [:: a is non-integer]

 $\therefore \left(\frac{2}{5}\right)^{-1} = \frac{1}{\left(\frac{2}{5}\right)^1}$

 $=\frac{3}{2}$

Q50. If $(-3)^{m+1} \times (-3)^5 = (-3)^7$, then the value of m is:

1 Mark

A 5

В

C 1

D 3

Ans:

C 1

Solution:

 $(-3)^{m+1} \times (-3)^5 = (-3)^7$

 $(-3)^{m+1+5} = (-3)^7$

Q51. If $\log_{m^y}^{m^x} = \frac{3}{4}$ then the value of 8x - 6y + 1 is equal to:

1 Mark

A 3

B 0

C 2

D 1

Ans: D 1

Q52. $100^0 + 20^0 + 5^0$ is equal to:

1 Mark

A 125

B 25

 $C \frac{1}{125}$

D 3

Ans:

D 3

Solution:

By exponent law we know:

 $a^{\circ} = 1$

IN PAID GROUP MONTHLY YOU CAN CUSTOMIZE ANY 10 TEST PAPERS ACCORDING TO YOUR REQUIRED CHAPTERS CLASS 8TH FEES RS.1000 FOR 1 YEAR

Q53. $3^2 \times 3^{-4} \times 3^5$ is equal to.

A 3

B 3^2

 $C 3^3$

D 3^{5}

Ans:

 $C 3^3$

Solution:

$$3^2 \times 3^{-4} \times 3^5 = 3^{2-4+5} = 3^3$$

The usual form for 2.03×10^{-5} Q54.

1 Mark

1 Mark

A 0.203

B 0.00203

C 203000

D 0.0000203

Ans:

D 0.0000203

Solution:

Given,

 $2.03 \times 10^{-5} = 0.0000203$

[.: placing decimal five digit towards left of original position]

Q55. Write 0.0000000256 in standard form: 1 Mark

A 2.56×10^{-11}

B 2.56×10^{-10}

C 2.56×10^{-8}

D 2.56×10^{-9}

Ans:

D 2.56×10^{-9}

Solution:

 $0.00000000256 = \frac{256}{100000000000}$

 $\frac{a^m}{b^m}$ is equal to bm. Q56.

1 Mark

A
$$\left(\frac{a}{b}\right)^m$$

A $\left(\frac{a}{b}\right)^m$ Ans:

Q57. Mark (\checkmark) against the correct answer of the following: 1 Mark

A
$$\frac{-27}{64}$$

D $\frac{27}{64}$

Ans:

Solution:

$$= \left(\frac{3}{4}\right)^{-3}$$

$$= \left(\frac{4}{3}\right)^{3}$$

$$= \frac{4^{3}}{3^{3}}$$

$$= \frac{64}{3}$$

Which of the following is the multiplicative inverse of $(3 \times 4)^{-2}$ Q58.

1 Mark

A
$$\frac{1}{144}$$

B 144

D 12

Ans:

D 12

If 1 nanometer is equal to $\frac{1}{1000000000}$ m Write 23 nanometer in meter and in standard form: Q59.

1 Mark

A
$$2.3 \times 10^{-8}$$
m

B
$$2.3 \times 10^{-9}$$
m

C
$$2.3 \times 10^{-10}$$
m

A 2.3×10^{-8} m Ans:

Solution:

 $1 \text{nm} = \frac{1}{1000000000} \text{m} = 1 \times 10^{-9}$

Multiplying 23 to both side,

 $23nm = 23 \times 1 \times 10^{-9}$

 $= 23 \times 10^{-9}$

 $= 23 \times 10 \times 10^{-9}$

 $= 2.3 \times 10^{-8} \text{m}$

Q60. 16 is the multiplicative inverse of.

> www.ravitestpapers.ir $A 2^{-4}$

 $B 2^{8}$

 $C 8^2$

 $D 2^4$

1 Mark

Ans: