RAVI MATHS TUITION CENTER, NEAR VILLIVAKKAM RLY STATION, CHENNAI – 82. WHATSAPP - 8056206308

Application of Matrices and Determinants T1

12th Standard

Maths

Exam Time: 01:15:00 Hrs

Total Marks: 50

 $5 \times 1 = 5$

1) If $|adj(adj A)| = |A|^9$, then the order of the square matrix A is

(a) 3 (b) 4 (c) 2 (d) 5 2) If A is a 3×3 non-singular matrix such that $AA^T = A^TA$ and $B = A^{-1}\underline{A}^T$, then $BB^T =$

(d) B^T

(a) A (b) B (c) I (3) If A = $\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, B = adj A and C = 3A, then $\frac{|adjB|}{|C|}$ =

(d) 1

(a) $\frac{1}{3}$ (b) $\frac{1}{9}$ 4) If A $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$, then A =

(a) $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$ 5) If A = $\begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then 9I - A =

(b) $\frac{A^{-1}}{2}$

(c) 3A⁻¹

(d) $2A^{-1}$

 $5 \times 2 = 10$

6) If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is non-singular, find A^{-1} .

7) Prove that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal

8) Find the rank of the following matrices by minor method:

$$\begin{bmatrix} 1 & -2 & -1 & 0 \\ 3 & -6 & -3 & 1 \end{bmatrix}$$

9) Solve the following system of homogenous equations.

$$2x + 3y - z = 0$$
, $x - y - 2z = 0$, $3x + y + 3z = 0$

10) Solve : 2x - y = 3, 5x + y = 4 using matrices.

 $5 \times 3 = 15$

11) Find the inverse of the matrix $\begin{bmatrix} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{bmatrix}$.

Verify the property $(A^T)^{-1} = (A^{-1})$ with $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$.

13) Find adj(adj A) if adj A = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$.

14) Reduce the matrix
$$\begin{bmatrix} 0 & 3 & 1 & 6 \\ -1 & 0 & 2 & 5 \\ 4 & 2 & 0 & 0 \end{bmatrix}$$
 to row-echelon form.

15) Solve the following systems of linear equations by Cramer's rule: $\frac{3}{x}$ + 2y = 12, $\frac{2}{x}$ + 3y = 13

$$4 \times 5 = 20$$

16) If A =
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & 4 \\ 2 & -4 & 3 \end{bmatrix}$$
, verify thatA(adj A)=(adj A)A = |A| I₃.

16) If
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & 4 \\ 2 & -4 & 3 \end{bmatrix}$$
, verify that $A(\text{adj A}) = (\text{adj A})A = |A| I_3$.

17) Find the inverse of $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ by Gauss-Jordan method.

- 18) The prices of three commodities A, B and C are Rs.x, y and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B. Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, P, Q and R earn Rs.15,000, Rs.1,000 and Rs.4,000 respectively. Find the prices per unit of A, B and C. (Use matrix inversion method to solve the problem.)
- 19) Investigate for what values of λ and μ the system of linear equations x + 2y + z = 7, $x + y + \lambda z = \mu$, x + 3y - 5z = 5 has
 - (i) no solution
 - (ii) a unique solution
 - (iii) an infinite number of solutions
