RAVI MATHS TUITION CENTER, GKM COLONY, CH-82. PH: 8056206308

12th MATHS MID TERM I

1	2th	Stand	lard	2019	FM
-	201	Staria	ulu	ZUIJ	

I	Maths	Reg.No.:			
IVE AND CUDCCOIDE MY VOLITUDE CHANNEL	U CD MATHE TECT DAD	EDC II			

Date: 19-Jul-19

LIKE AND SUBSCRIBE MY YOUTUBE CHANNEL " **SR MATHS TEST PAPERS** " SEARCH **ANSWERS** ON GOOGLE ' **RAVI MATHS TUITION CENTER ' FOR MORE PAPER**FOR ANSWERS **WHATSAPP – 8056206308** . FEES RS. 500 PER YEAR FOR UNLIMITTED PAPERS WITH ANSWERS

Time : 01:15:00 Hrs

ANSWER ALL

10 x 1 = 10

- 1) If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$ then |adj(AB)| =
 - (a) -40 (b) -80 (c) -60 (d) -20
- 2) If A = $\begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix} \text{ and } \mathbf{A}^{\text{-}1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \text{ then the value of } \mathbf{a}_{23} \text{ is }$
 - (a) 0 (b) -2 (c) -3 (d) -1
- 3) If $x^ay^b = e^m$, $x^cy^d = e^n$, $\Delta_1 = \begin{vmatrix} m & b \\ n & d \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} a & m \\ c & n \end{vmatrix}$, $\Delta_3 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$, then the values of x and y are respectively,
 - (a) $e^{(\Delta_2/\Delta_1)}$, $e^{(\Delta_3/\Delta_1)}$ (b) $\log{(\Delta_1/\Delta_3)}$, $\log{(\Delta_2/\Delta_3)}$ (c) $\log{(\Delta_2/\Delta_1)}$, $\log{(\Delta_3/\Delta_1)}$ (d) $e^{(\Delta_1/\Delta_3)}$, $e^{(\Delta_2/\Delta_3)}$
- 4) The area of the triangle formed by the complex numbers z,iz, and z+iz in the Argand's diagram is
 - (a) $\frac{1}{2}|z|^2$ (b) $|z|^2$ (c) $\frac{3}{2}|z|^2$ (d) $2|z|^2$
- 5) z_1, z_3 and z_3 are complex number such that $z_1+z_2+z_3=0$ and $|z_1|=|z_2|=|z_3|=1$ then $z_1^2+z_2^2+z_2^3$ is
 - (a) 3 (b) 2 (c) 1 (d) 0
- 6) The principal argument of (sin 40°+i cos40°)5 is
 - (a) -110° (b) -70° (c) 70° (d) 110°
- 7) A polynomial equation in x of degree n always has
 - (a) n distinct roots (b) n real roots (c) n imaginary roots (d) at most one root
- 8) According to the rational root theorem, which number is not possible rational root of $4x^7+2x^4-10x^3-5$?
 - (a) -1 (b) $\frac{5}{4}$ (c) $\frac{4}{5}$ (d) 5
- 9) If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$; then $\cos^{-1} x + \cos^{-1} y$ is equal to
 - (a) $\frac{2\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ (d) π
- 10) The domain of the function defined by $f(x)=\sin^{-1}\sqrt{x-1}$ is
 - (a) [1,2] (b) [-1,1] (c) [0,1] (d) [-1,0]

ANSWER 4 4 x 2 = 8

- 11) If A = $\begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$, verify that A(adj A) = $|A|I_2$.
- 12) 4 men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.
- The complex numbers u,v, and w are related by $\frac{1}{u}=\frac{1}{v}+\frac{1}{w}$ If v=3-4i and w=4+3i, find u in rectangular form.

14) Simplify the following

$$\sum_{n=1}^{12} i^n$$

- 15) Construct a cubic equation with roots 1,2, and 3
- 16) Determine the number of positive and negative roots of the equation x9-5x4-14x2=0.
- 17) Find the value of

$$sin^{-1}(-1) + cos^{-1}\left(rac{1}{2}
ight) + cot^{-1}(2)$$

ANSWFR 4

4 x 3 = 12

18) If adj A =
$$\begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, find A⁻¹.

- 19) Solve the system: x + y 2z = 0, 2x 3y + z = 0, 3x 7y + 10z = 0, 6x 9y + 10z = 0.
- Simplify $\left(rac{1+cos2 heta+isin2 heta}{1+cos2 heta-isin2 heta}
 ight)^{30}$
- 21) Solve the equation $x^4-9x^2+20=0$.
- 22) Solve the equation $7x^3-43x^2=43x-7$
- 23) Evaluate $sin\left[sin^{-1}\left(\frac{3}{5}\right) + sec^{-1}\left(\frac{5}{4}\right)\right]$
- 24) Solve $tan^{-1}\left(rac{x-1}{x-2}
 ight)+tan^{-1}\left(rac{x+1}{x+2}
 ight)=rac{\pi}{4}$

 $4 \times 5 = 20$

25) a) Find the inverse of A =
$$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$
 by Gauss-Jordan method.

(OR)

b) Investigate for what values of λ and μ the system of linear equations

$$x + 2y + z = 7$$
, $x + y + \lambda z = \mu$, $x + 3y - 5z = 5$ has

- (i) no solution
- (ii) a unique solution
- (iii) an infinite number of solutions
- 26) a) Find (i) $\cos^{-1}(-\frac{1}{\sqrt{2}})$

ii)
$$\cos^{-1}(cos(-\frac{\pi}{3}))$$

iii)
$$\cos^{\text{-}1}(cos(-rac{7\pi}{6}))$$

(OR)

b) Show that
$$\cot^{\text{-}1}\!\left(\frac{1}{\sqrt{x^2-1}}\right)=sec^{-1}x, |x|>1$$

27) a) Solve the equation (x-2)(x-7)(x-3)(x+2)+19=0

(OR)

b) Discuss the nature of the roots of the following polynomials:

$$x^5-19x^4+2x^3+5x^2+11$$

28) a) Let z_1 , z_2 , and z_3 be complex numbers such that $\lfloor z_1 \rfloor = |z_2| = |z_3| = r > 0$ and z_1 + z_2 + $z_3 \neq 0$ prove that

$$\left| \frac{z_1 z_2 + z_2 z_3 + z_3 z_2}{z_1 + z_2 + z_3} \right| = \mathsf{r}$$

(OR)

b) If z=x+iy and $\operatorname{arg}\left(\frac{z-1}{z+1}\right)=\frac{\pi}{2}\,$,then show that x²+y²=1.
