RAVI MATHS TUITION CENTER PH - 8056206308 REIVISION TEST 2 [CHAPTER 2 & 3]

12th Standard 2019 EM

Maths

Reg.No.: Total Marks: 90

•

Time: 02:30:00 Hrs

20 x 1 = 20

Date: 26-Jun-19

- 1) The area of the triangle formed by the complex numbers z,iz, and z+iz in the Argand's diagram is
 - (a) $\frac{1}{2}|z|^2$ (b) $|z|^2$ (c) $\frac{3}{2}|z|^2$ (d) $2|z|^2$
- 2) If z is a non zero complex number, such that $2iz^2\bar{z}$ then |z| is then |z| is
 - (a) $\frac{1}{2}$ (b) 1 (c) 2 (d) 3
- 3) If $\left|z-rac{3}{z}
 ight|=2\,$ then the least value $|{
 m z}|$ is
 - (a) 1 (b) 2 (c) 3 (d) 5
- 4) The solution of the equation |z|-z=1+2i is
 - (a) $\frac{3}{2} 2i$ (b) $-\frac{3}{2} + 2i$ (c) $2 \frac{3}{2}i$ (d) $2 + \frac{3}{2}i$
- 5) z_1, z_3 and z_3 are complex number such that $z_1+z_2+z_3=0$ and $|z_1|=|z_2|=|z_3|=1$ then $z_1^2+z_2^2+z_2^3$ is
 - (a) 3 (b) 2 (c) 1 (d) 0
- 6) If $z=\cos\frac{\pi}{4} + i\sin\frac{\pi}{6}$, then
 - (a) |z| = 1, $\arg(z) = \frac{\pi}{4}$ (b) |z| = 1, $\arg(z) = \frac{\pi}{6}$ (c) $|z| = \frac{\sqrt{3}}{2}$, $\arg(z) = \frac{5\pi}{24}$ (d) $|z| = \frac{\sqrt{3}}{2}$, $\arg(z) = \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$
- 7) The least positive integer n such that $\left(\frac{2i}{1+i}\right)^n$ is a positive integer is
 - (a) 16 (b) 8 (c) 4 (d) 2
- 8) If $z=1-\cos\theta + i\sin\theta$, then |z|=
 - (a) $2\sin\frac{1}{3}$ (b) $2\cos\frac{\theta}{2}$ (c) $2|\sin\frac{\theta}{2}|$ (d) $2|\cos\frac{\theta}{2}|$
- 9) If x+iy = $\frac{3+5i}{7-6i}$, they y =
 - (a) $\frac{9}{85}$ (b) $-\frac{9}{85}$ (c) $\frac{53}{85}$ (d) none of these
- 10) If ω is the cube root of unity, then the value of (1- ω) (1- ω^2) (1- ω^4) (1- ω^8) is
 - (a) 9 (b) -9 (c) 16 (d) 32
- 11) The modular of $\frac{(-1+i)(1-i)}{1+i\sqrt{3}}$ is _____
 - (a) $\sqrt{2}$ (b) 2 (c) 1 (d) $\frac{1}{2}$
- 12) A polynomial equation in x of degree n always has
 - (a) n distinct roots (b) n real roots (c) n imaginary roots (d) at most one root
- 13) If α,β and γ are the roots of x³+px²+qx+r, then $\Sigma \frac{1}{\alpha}$ is
 - (a) $-\frac{q}{r}$ (b) $\frac{p}{r}$ (c) $\frac{q}{r}$ (d) $-\frac{q}{p}$
- 14) According to the rational root theorem, which number is not possible rational root of $4x^7+2x^4-10x^3-5$?
 - (a) -1 (b) $\frac{5}{4}$ (c) $\frac{4}{5}$ (d) 5
- 15) The number of real numbers in $[0,2\pi]$ satisfying $\sin^4 x$ - $2\sin^2 x+1$ is
 - (a) 2 (b) 4 (c) 1 (d) $^{\circ}$

- 16) The polynomial x³+2x+3 has
 - (a) one negative and two real roots (b) one positive and two imaginary roots (c) three real roots (d) no solution
- 17) The number of positive roots of the polynomial $\sum\limits_{j=0}^{n}n_{C_{r}}$ (-1)^rX^r is
 - (a) 0 (b) n (c) < n (d) r
- 18) If j(x) = 0 has n roots, then f'(x) = 0 has _____ roots
 - (a) n (b) n-1 (c) n+1 (d) (n-r)
- 19) If $(2+\tilde{A}3)x^2-2x+1+(2-\tilde{A}3)x^2-2x-1=\frac{2}{2-\sqrt{3}}$ then x=
 - (a) 0,2 (b) 0,1 (c) 0,3 (d) 0,Ã3
- 20) If $p(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + dx + c$ where ac 0 then p(x). Q(x) = 0 has at least _____ real roots.
 - (a) no (b) 1 (c) 2 (d) infinite

 $7 \times 2 = 14$

- 21) Given the complex number z=2+3i, represent the complex numbers in Argand diagram z, iz, and z+iz
- 22) If $z_1 = z_1 = 1 3i$, = -4, and $z_2 = 5$, show that $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- 23) Find the modulus of the following complex number

$$\frac{2-i}{1+i} + \frac{1-2i}{1-i}$$

24) Obtain the Cartesian form of the locus of z=x+iy in each of the following cases

$$Im[(1-i)z+1]=0$$

- 25) Show that the following equations represent a circle, and, find its centre and radius |3x-6+12i|=8
- 26) Find a polynomial equation of minimum degree with rational coefficients, having $\sqrt{5} \sqrt{3}$ as a root.
- 27) Solve: (2x-1)(x+3)(x-2)(2x+3)+20=0
- 28) Find all zeros of the polynomial $x^6-3x^5-5x^4+22x^3-39x^2-39x+135$, if it is known that 1+2i and $\sqrt{3}$ are two of its zeros.
- 29) Find all real numbers satisfying $4^{x}-3(2^{x+2})+2^{5}=0$
- 30) Examine for the rational roots of x8-3x+1=0

 $7 \times 3 = 21$

- 31) Show that |z+2-i|< 2 represents interior points of a circle. Find its centre and radius.
- 32) Find the fourth roots of unity.
- 33) Simplify the following:

34) Obtain the Cartesian form of the locus of z in the cases.

- 35) Find the locus of z if $Re\left(\frac{z+1}{z-i}\right) = 0$ where z=x+iy.
- 36) If p is real, discuss the nature of the roots of the equation $4x^2+4px+p+2=0$ in terms of p.
- 37) Solve the equation $2x^3+11x^2-9x-18=0$.
- 38) If the roots of $x^3+px^2+qx+r=0$ are in H.P. prove that $9pqr = 27r^3+2p$.
- 39) Solve the equation $x^3-5x^2-4x+20=0$
- 40) Find solution, if any, of the equation 2cos²x-9cosx+4=0

 $14 \times 5 = 70$

41) a)

Find the value of the real numbers x and y, if the complex number (2+i)x+(1-i)y+2i-3 and x+(-1+2i)y+1+i are equal

(OR

b) Let $\mathsf{z_1},\mathsf{z_2},$ and $\mathsf{z_3}$ be complex numbers such that $\lfloor z_1 \rfloor = |z_2| = |z_3| = r > 0$ and $\mathsf{z_1}$ + $\mathsf{z_2}$ + $\mathsf{z_3} \neq 0$ prove that

$$\left| \frac{z_1 z_2 + z_2 z_3 + z_3 z_2}{z_1 + z_2 + z_3} \right| = \mathsf{r}$$

42) a) If z=x+iy and $\arg\left(\frac{z-1}{z+1}\right)=\frac{\pi}{2}$,then show that x²+y²=1.

(OR)

- b) If 1, ω , ω^2 are the cube roots of unity then show that $(1+5\omega^2+\omega^4)$ $(1+5\omega+\omega^2)$ $(5+\omega+\omega^5)$ =64
- 43) a) Find all the roots $(2-2i)^{\frac{1}{3}}$ and also find the product of its roots.

(OR

- b) Show that, if p,q,r are rational, the roots of the equation $x^2-2px+p^2-q^2+2qr-r^2=0$ are rational.
- 44) a) Discuss the nature of the roots of the following polynomials:

$$x^{2018}+1947x^{1950}+15x^8+26x^6+2019$$

(OR)

- b) If a, b, c, d and p are distinct non-zero real numbers such that $(a^2+b^2+c^2)$ p^2-2 (ab+bc+cd) $p+(b^2+c^2+d^2) \le 0$ the n. Prove that a,b,c,d are in G.P and ad=bc
- Find the product $\frac{3}{2} \left(cos \frac{\pi}{3} + i sin \frac{\pi}{3} \right) .6 \left(cos \frac{5\pi}{6} + i sin \frac{5\pi}{6} \right)$ in rectangular from (OR)
 - b) Represent the complex numbe $1+i\sqrt{3}\,$ in polar form.
- 46) a) Show that the equation $2x^2-6x+7=0$ cannot be satisfied by any real values of x.

(OR)

- b) Solve the equation (x-2)(x-7)(x-3)(x+2)+19=0
- 47) a) Find the principal argument Arg z , when z = $\dfrac{-2}{1+i\sqrt{3}}$

(OR

b) Show that the polynomial $9x^9+2x^5-x^4-7x^2+2$ has at least six imaginary roots.
