RAVI MATHS TUITION CENTER, GKM COLONY, CH-82, PH: 8056206308

1st MID - TERM MODEL PAPER 3

12th Standard 2019 EM

Maths

Reg.No.: Total Marks: 50

Date: 16-Jul-19

10 x 1 = 10

Time: 01:15:00 Hrs

SEARCH RAVI MATHS TUITION CENTER ON GOOGLE for more papers

LIKE AND SUBSCRIBE ON YOUTUBE SR MATHS TEST PAPERS

1)

If
$$A = \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}$$
 and $AB = I$, then $B = I$

(a)
$$\left(\cos^2\frac{\theta}{2}\right)A$$
 (b) $\left(\cos^2\frac{\theta}{2}\right)A^T$ (c) $\left(\cos^2\theta\right)I$ (d) $\left(\sin^2\frac{\theta}{2}\right)A$

2)

The rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$$
 is

- (a) 1 (b) 2 (c) 4 (d) 3
- 3) The system of linear equations x + y + z = 2, 2x + y z = 3, 3x + 2y + kz = has a unique solution if
 - (a) k 0 (b) -1 < k < 1 (c) -2 < k < 2 (d) k = 0
- 4) If z is a complex number such that $z \in C/R$ and $z + \neg \epsilon R$ then |z| is
 - (a) 0 (b) 1 (c) 2 (d) 3
- 5) The principal argument of $\frac{1}{1+i}$
- The least positive integer n such that $\left(\frac{2i}{1+i}\right)^n$ is a positive integer is
 - (a) 16 (b) 8 (c) 4 (d) 2
- 7) The number of real numbers in $[0,2\pi]$ satisfying $\sin^4 x 2\sin^2 x + 1$ is
 - (a) 2 (b) 4 (c) 1 (d) °
- 8) If $x^3+12x^2+10ax+1999$ definitely has a positive root, if and only if
 - (a) $a \ge 0$ (b) a > 0 (c) a < 0 (d) $a \le 0$
- 9) For real x, the equation $\left| \frac{x}{x-1} \right| + |x| = \frac{x^2}{|x-1|}$ has
 - (a) one solution (b) two solution (c) at least two solution (d) no solution
- 10) If the equation ax2+ bx+c=0(a > 0) has two roots \propto and β such that \propto < 2 and β > 2, then
 - (a) b2-4ac=0 (b) $b^2-4ac<0$ (c) $b^2-4ac>0$ (d) $b^2-4ac\ge0$

- 11) Show that the equations 3x + y + 9z = 0, 3x + 2y + 12z = 0 and 2x + y + 7z = 0 have nontrivial solutions also.
- 12) If z=x+iy is a complex number such that Im $\left(\frac{2z+1}{iz+1}\right) = 0$ show that the locus of z is 2x²+2y²+x-2y=0
- Find the value of $\sum_{k=1}^{8} \left(cos \frac{2k\pi}{9} + isi \frac{2k\pi}{9} \right)$.
- 14) Solve the equation $x^3-9x^2+14x+24=0$ if it is given that two of its roots are in the ratio 3:2.
- 15) Solve the equation 9x-36x²+44x-16=0 if the roots form an arithmetic progression.

 $5 \times 3 = 15$

- 16) By using Gaussian elimination method, balance the chemical reaction equation: $C_5H_8 + O_2 \rightarrow CO_2 + H_2O$. (The above is the reaction that is taking place in the burning of organic compound called isoprene.)
- 17) Solve the equation z³+8i=0, where
- Show that $\left(\frac{19+9i}{5-3i}\right)^{15} \left(\frac{8+i}{I+2i}\right)^{15}$ is purely imaginary.
- 19) Obtain the condition that the roots of x³+px²+gx+r=0 are in A.P.
- 20) Find the roots of $2x^3+3x^2+2x+3$

 $3 \times 5 = 15$

- 21) Find the condition on a, b and c so that the following system of linear equations has one parameter family of solutions: x + y + z = a, x + 2y + 3z = b, 3x + 5y + 7z = c.
- 22) If z=x+iy and $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$, then show that x²+y²=1.
- 23) Discuss the nature of the roots of the following polynomials: $x^{2018}+1947x^{1950}+15x^8+26x^6+2019$
