RAVI MATHS TUITION CENTER, NEAR VILLIVAKKAM RLY STATION, CHENNAI - 82. WHATSAPP - 8056206308

VERY IMPORTANT 2 MARKS FOR SLOW LEARNERS

12th Standard

Date: 04-Mar-20

Maths

ANSWERS AVAILABLE IN MY YOUTUBE CHANNEL

MY YOUTUBE CHANNEL NAME- SR MATHS TEST PAPERS

LIKE, SUBSCRIBE AND SHARE

FOLLOE ME ON HELO APP

Exam Time: 01:00:00 Hrs

Total Marks: 110

$$55 \times 2 = 110$$

1) If adj A =
$$\begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, find A⁻¹.

- Reduce the matrix $\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ 2 & 1 & 2 \end{bmatrix}$ to a row-echelon form. 2)
- 3) Solve the following system of homogenous equations. 2x + 3y - z = 0, x - y - 2z = 0, 3x + y + 3z = 0
- 4) Find the rank of each of the following matrices:

$$\begin{bmatrix} 4 & 3 & 1 & -2 \\ -3 & -1 & -2 & 4 \\ 6 & 7 & -1 & 2 \end{bmatrix}$$

- $\begin{bmatrix} 4 & 3 & 1 & -2 \\ -3 & -1 & -2 & 4 \\ 6 & 7 & -1 & 2 \end{bmatrix}$ 5) Simplify $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3$
- 6) Which one of the points i,-2+i, and 3 is farthest from the origin?
- 7) Find the square root of 6-8i.
- 8) Write in polar form of the following complex numbers $2 + i2\sqrt{3}$
- Find the value of $\sum_{k=1}^{8} \left(cos \frac{2k\pi}{9} + isin \frac{2k\pi}{9} \right)$.
- 10) Simplify the following i i ²i³...i²⁰⁰⁰
- 11) Show that the following equations represent a circle, and, find its centre and radius

- 12) Show that, if p,q,r are rational, the roots of the equation $x^2-2px+p^2-q^2+2qr-r^2=0$ are rational.
- 13) Solve the equation : $x^4-14x^2+45=0$
- 14) Determine the number of positive and negative roots of the equation x^9-5x^4 $14x^2 = 0$.
- 15) Construct a cubic equation with roots 1,1, and -2

- 16) Find all the values of x such that $-10\pi < x < 10\pi$ and sin x=0
- 17) Find the value of $2cos^{-1}\left(\frac{1}{2}\right) + sin^{-1}\left(\frac{1}{2}\right)$
- 18) Prove that $itan^{-1}(\frac{2}{11}) + tan^{-1}(\frac{7}{24}) = tan^{-1}(\frac{1}{2})$
- 19) Prove that $\tan^{-1} x + \tan^{-1} z = \tan^{-1} \left[\frac{x+y+z-xyz}{1-xy-yz-zx} \right]$
- 20) If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, show that x + y + z + = xyz
- 21) Find the value of $cos\left[\frac{1}{2}cos^{-1}\left(\frac{1}{8}\right)\right]$
- 22) If y=4x+c is a tangent to the circle $x^2+y^2=9$, find c.
- 23) Find the equation of the circle with centre (2,-1) and passing through the point (3,6) in standard form.
- 24) Find the vertices, foci for the hyperbola $9x^2-16y^2=144$.
- 25) Find centre and radius of the following circles. $2x^2+2y^2-6x+4y+2=0$
- 26) If \vec{a} , \vec{b} , \vec{c} are three vectors, prove that $[\vec{a} + \vec{c}, \vec{a} + \vec{b}, \vec{a} + \vec{b} + \vec{c}] = [\vec{a}, \vec{b}, \vec{c}]$
- $\hat{a}_{i}=\hat{a}_{i}-\hat{a}_{j}+\hat{a}_{k}, \hat{b}_{i}=\hat{a}_{i}+\hat{b}_{i}-\hat{b}_{k}, \hat{c}_{i}=\hat{a}_{i}+\hat{b}_{i}$
- 28) The volume of the parallelepiped whose coterminus edges are $7\hat{i} + \lambda\hat{j} 3\hat{k}, \hat{i} + 2\hat{j} \hat{k}, -3\hat{i} + 7\hat{j} + 5\hat{k}$ is 90 cubic units. Find the value of λ .
- 29) Show that the lines $\frac{x-1}{4} = \frac{2-y}{6} = \frac{z-4}{12}$ and $\frac{x-1}{4} = \frac{2-y}{6} = \frac{z-4}{12}$ are parallel.
- 30) A variable plane moves in such a way that the sum of the reciprocals of its intercepts on the coordinate axes is a constant. Show that the plane passes through a fixed point
- 31) Find the angle between the straight line $\vec{r}=(2\hat{i}+\hat{j}+\hat{k})+t(\hat{i}-\hat{j}+\hat{k})$ and the plane 2x-y+z=5
- 32) Find the length of the perpendicular from the point (1, -2, 3) to the plane x y + z = 5.
- 33) Find the distance between the parallel planes x+2y-2z=0 and 2x+4y-4z+5=0
- 34) Find the angle between the following lines. 2x = 3y = -z and 6x = -y = -4z.
- 35) Find two positive numbers whose sum is 12 and their product is maximum.
- 36) Find two positive numbers whose product is 20 and their sum is minimum.
- 37) Evaluate the following limit, if necessary use l'Hôpital Rule $\lim_{x\to 0} \frac{1-cosx}{x^2}$
- 38) Evaluate the following limit, if necessary use l'Hôpital Rule $\lim_{x \to \infty} \frac{2x^2 3}{x^2 5x + 3}$
- 39) Prove that the function $f(x) = x^2 + 2$ is strictly increasing in the interval (2,7) and strictly decreasing in the interval (-2, 0)
- 40) Prove that the function f (x) = $x^2 2x 3$ is strictly increasing in $(2, \infty)$

- 41) Find the partial derivatives of the following functions at the indicated point $g(x,y) = 3x^2 + y^2 + 5x + 2$, (1,-2)
- 42) If $w(x, y, z) = x^2 y + y^2 z + z^2 x$, $x, y, z \in \mathbb{R}$, find the differential dw.
- 43) A differential equation, determine its order, degree (if exists)

$$\left(rac{d^3y}{dx^3}
ight)^{rac{2}{3}} - 3rac{d^2y}{dx^2} + 5rac{dy}{dx} + 4 = 0$$

44) A differential equation, determine its order, degree (if exists)

$$y\left(rac{dy}{dx}
ight) = rac{x}{\left(rac{dy}{dx}
ight) + \left(rac{dy}{dx}
ight)^3}$$

45) A differential equation, determine its order, degree (if exists)

$$\left[x^2rac{d^2y}{dx^2}+\left[1+\left(rac{dy}{dx}
ight)^2
ight]^{rac{1}{2}}=0$$

46) A differential equation, determine its order, degree (if exists)

$$rac{d^2y}{dx^2} + 5rac{dy}{dx} + \int y dx = x^3$$

47) Determine the order and degree (if exists) of the following differential equations:

$$\left(rac{d^2y}{dx^2}+3{\left(rac{dy}{dx}
ight)}^2=x^2log\left(rac{d^2y}{dx^2}
ight)$$

- 48) An urn contains 5 mangoes and 4 apples Three fruits are taken at randaom If the number of apples taken is a random variable, then find the values of the random variable and number of points in its inverse images.
- 49) Three fair coins are tossed simultaneously. Find the probability mass function for number of heads occurred
- 50) Compute P(X = k) for the binomial distribution, B(n,p) where

n=9,
$$p = \frac{1}{2}$$
,k=7

- 51) Determine whether * is a binary operation on the sets given below. a*b=b=a.|b| on R
- 52) Let *be defined on R by (a*b)=a+b+ab-7. is*binary on R? If so, find $3\left(\frac{-7}{15}\right)$.
- 53) Fill in the following table so that the binary operation * on A = $\{a,b,c\}$ is commutative.

- 54) Construct the truth table for the following statements.
 - $\neg p \land \neg q$
- 55) Construct the truth table for the following statements.

ANY TEACHERS, STUDENTSAND PARENTS JOIN IN
MY WHATSAPP [8056206308]
QUESTION BANK GROUP (JUNE TO MARCH)
SUBJECTS- MATHS , PHYSICS, CHEMISTRY, BIOLOGY,

BUSINESS MATHS, SCIENCE, SOCIAL TILL BOARD EXAM UNLIMITED PRACTICE PAPERS YEARLY FEES PER SUBJECT- PRICE Rs,500 (WHATSAPP - 8056206308
