RAVI MATHS TUITION CENTER ,GKM COLONY, CH- 82. PH: 8056206308

MATRICES AND DETERMINANTS - TEST 2

12th Standard 2019 EM

Maths

Reg.No.:

Total Marks: 50

Date: 10-Jun-19

5 x 1 = 5

Time: 01:30:00 Hrs

1) If
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$ then $|adj(AB)| =$

If P =
$$\begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$$
 is the adjoint of 3 × 3 matrix A and |A| = 4, then x is

3)

If
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is

- 4) If A, B and C are invertible matrices of some order, then which one of the following is not true?
 - (a) $adj A = |A|A^{-1}$ (b) adj(AB) = (adj A)(adj B) (c) $det A^{-1} = (det A)^{-1}$ (d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$

5) If
$$(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then $B^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$

(a)
$$\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$$
 (b) $\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$

10 x 2 = 20

- 6) Find the matrix A for which A $\begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 14 & 7 \\ 7 & 7 \end{bmatrix}$.
- Given $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, find a matrix X such that AXB = C.
- 8) Decrypt the received encoded message $\begin{bmatrix} 2 & -3 \end{bmatrix} \begin{bmatrix} 20 & 4 \end{bmatrix}$ with the encryption matrix $\begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$

and the decryption matrix as its inverse, where the system of codes are described by the numbers 1 - 26 to the letters A - Z respectively, and the number 0 to a blank space.

9) Find the rank of the following matrices by row reduction method:

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11 \end{bmatrix}$$

4 men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.

- 11) In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{4}$ mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly? (Use Cramer's rule to solve the problem).
- 12) If $ax^2 + bx + c$ is divided by x + 3, x 5, and x 1, the remainders are 21,61 and 9 respectively. Find a,b and c. (Use Gaussian elimination method.)
- 13) Find the value of k for which the equations kx 2y + z = 1, x 2ky + z = -2, x 2y + kz = 1 have
 - (i) no solution
 - (ii) unique solution
 - (iii) infinitely many solution
- 14) Find the adjoint of the following:

$$\begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{bmatrix}$$

15) Solve the following system of linear equations by matrix inversion method:

$$2x - y = 8$$
, $3x + 2y = -2$

 $5 \times 3 = 15$

- 16) The upward speed v(t) of a rocket at time t is approximated by v(t) = $at^2 + bt + c \le t \le 100$ where a, b and c are constants. It has been found that the speed at times t = 3, t = 6, and t = 9 seconds are respectively, 64, 133, and 208 miles per second respectively. Find the speed at time t = 15 seconds. (Use Gaussian elimination method.)
- 17) Solve the system: x + y 2z = 0, 2x 3y + z = 0, 3x 7y + 10z = 0, 6x 9y + 10z = 0.
- 18) Determine the values of λ for which the following system of equations $(3\lambda 8)x + 3y + 3z = 0$, $3x + (3\lambda 8)y + 3z = 0$, 3x + 3y + 3z = 0, 3x + 3y + 3z =
- 19) By using Gaussian elimination method, balance the chemical reaction equation: $C_5H_8 + O_2 \longrightarrow CO_2 + H_2O$. (The above is the reaction that is taking place in the burning of organic compound called isoprene.)
- 20) If the system of equations px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a non-trivial solution and p a,q b,r c, prove that $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$.

 $2 \times 5 = 10$

21) Test for consistency of the following system of linear equations and if possible solve:

$$x + 2y - z = 3$$
, $3x - y + 2z = 1$, $x - 2y + 3z = 3$, $x - y + z + 1 = 0$

22) Investigate for what values of λ and μ the system of linear equations

$$x + 2y + z = 7$$
, $x + y + \lambda z = \mu$, $x + 3y - 5z = 5$ has

- (i) no solution
- (ii) a unique solution
- (iii) an infinite number of solutions
