## RAVI MATHS TUITION CENTER, GKM COLONY, CHENNAI- 82. PH: 8056206308 Date: 01-Nov-19

## HALF YEARLY MODEL PAPER 2

12th Standard **Business Maths** 

Exam Time: 02:30:00 Hrs

Reg.No.:

Total Marks: 90  $20 \times 1 = 20$ 

| (a) 0 (b) 1 (c) m (d) n (2) If $A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$ , then $\rho(A)$ is (a) 0 (b) 1 (c) 2 (d) n (3) $\int \frac{\sin x}{\sin x} dx$ is (a) $\sin x + c$ (b) $\frac{1}{2} \sin x + c$ (c) $\cos x + c$ (d) $\frac{1}{2} \cos x + c$ 4) $\int \left[ \frac{9}{x^3} - \frac{1}{x+1} \right] dx$ is (a) $\log  x-3  - \log  x+1  + c(b) \log  x-3  + \log  x+1  + c(c) 9 \log  x-3  - \log  x+1  + c(d) 9 \log  x-3  + c(d)  x-1  + c(d) 9 \log  x-3  + c(d) 9 \log  x-3  + c(d) 9 \log  x-3  + c(d) 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1)  | The rank of m×n matrix wh                                              | ose elements are unity is                          |                                                                      |                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| (a) 0 (b) 1 (c) 2 (d) n  3) $\int \frac{\sin x}{2 \sin x} dx$ is (a) $\sin x + c$ (b) $\frac{1}{2} \sin x + c$ (c) $\cos x + c$ (d) $\frac{1}{2} \cos x + c$ 4) $\int \left[ \frac{9}{x^3} - \frac{1}{x+1} \right] dx$ is (a) $\log  x-3  - \log  x+1  + c(b) \log  x-3  + \log  x+1  + c(c) 9 \log  x-3  - \log  x+1  + c(d) 9 \log  x-3  + \log  x+1 $ 5) Area bounded by the curve $y = \frac{1}{x}$ between the limits 1 and 2 is (a) $\log 2$ sq.units (b) $\log 5$ sq.units (c) $\log 3$ sq.units (d) $\log 4$ sq.units  6) The marginal cost function is $MC = 100 \sqrt{x}$ . find AC given that $TC = 0$ when the out put is zero is (a) $\frac{200}{3} x^{\frac{1}{2}}$ (b) $\frac{200}{3} x^{\frac{3}{2}}$ (c) $\frac{200}{3x^{\frac{3}{2}}}$ (d) $\frac{200}{3x^{\frac{3}{2}}}$ 7) The order and degree of the differential equation $\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx} + 5}$ are respectively (a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2  8) If $y = \cot x + c - c^3$ then its differential equation is (a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ (b) $y = \left(\frac{dy}{dx}\right)^3 = x \frac{dy}{dx} - \frac{dy}{dx}$ (c) $\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)^3 - x \frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3} = 0$ 9) If $h = 1$ , ten $\Delta(x^2) =$ (a) 2x (b) 2x -1 (c) 2x +1 (d) 1  10) For the given data find the value of $\Delta^3 y_0$ is $\frac{ x }{ x } = \frac{ x }{ x }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                                                        |                                                    | (c) m                                                                | (d) n                                                                                   |
| 3) $\int \frac{\sin 2x}{2\sin x} dx$ is (a) $\sin x + c$ (b) $\frac{1}{2}\sin x + c$ (c) $\cos x + c$ (d) $\frac{1}{2}\cos x + c$ 4) $\int \left[\frac{9}{2x-3} - \frac{1}{x+1}\right] dx$ is (a) $\log  x-3  - \log  x+1  + c$ (b) $\log  x-3  + \log  x+1  + c$ (c) $9\log  x-3  - \log  x+1  + c$ (d) $9\log  x-3  + \log  x+1  + c$ (d) $\log  x-3  + \log  x+1  + c$ (e) $\log  x-3  - \log  x+1  + c$ (f) $\log  x-3  + \log  x+1  + c$ (f) $\log  x-3  + \log  x+1  + c$ (g) $\log  x-1  + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2)  | If $A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$ , then $\rho(A)$ | is                                                 |                                                                      |                                                                                         |
| (a) $\sin x + c$ (b) $\frac{1}{2} \sin x + c$ (c) $\cos x + c$ (d) $\frac{1}{2} \cos x + c$ 4) $\int \frac{9}{2x^{-3}} - \frac{1}{x^{+1}} dx$ is  (a) $\log  x - 3  - \log  x + 1  + c$ (b) $\log  x - 3  + \log  x + 1  + c$ (c) $9\log  x - 3  - \log  x + 1  + c$ (d) $9\log  x - 3  + \log  x + 1  + c$ 5) Area bounded by the curve $y = \frac{1}{x}$ between the limits 1 and 2 is  (a) $\log 2$ sq.units (b) $\log 5$ sq.units (c) $\log 3$ sq.units (d) $\log 4$ sq.units  6) The marginal cost function is $MC = 100 \sqrt{x}$ . find AC given that $TC = 0$ when the out put is zero is  (a) $\frac{200}{3} x^{\frac{1}{2}}$ (b) $\frac{200}{3} x^{\frac{3}{2}}$ (c) $\frac{200}{3x^{\frac{3}{2}}}$ (d) $\frac{200}{3x^{\frac{3}{2}}}$ 7) The order and degree of the differential equation $\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx} + 5}$ are respectively  (a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2  8) If $y = cx + c - c^3$ then its differential equation is  (a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ (b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} - \frac{dy}{dx}$ (c) $\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)^3 - x\frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3} = 0$ 9) If $h = 1$ , then $\Delta(x^2) =$ (a) $2x$ (b) $2x - 1$ (c) $2x + 1$ (d) 1  10) For the given data find the value of $\Delta^3 y_0$ is $\frac{ x }{ x } = \frac{ x }{ x }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | (a) 0                                                                  | (b) 1                                              | (c) 2                                                                | (d) n                                                                                   |
| 4) $\int \left[\frac{9}{x^{-3}} - \frac{1}{x+1}\right] dx \text{ is}$ (a) $\log  x-3  - \log  x+1  + c(b) \log  x-3  + \log  x+1  + c(c) \operatorname{9log}  x-3  - \log  x+1  + c(d) \operatorname{9log}  x-3  + + c(d) \operatorname{9log}  x-2  + c(d$ | 3)  | $\int \frac{\sin 2x}{2\sin x} dx$ is                                   |                                                    |                                                                      |                                                                                         |
| (a) $\log  x-3  - \log  x+1  + c(b)$ $\log  x-3  + \log  x+1  + c(c)$ $9\log  x-3  - \log  x+1  + c(d)$ $9\log  x-3  + \log  x+1  + c(d)$ $\log  x-3  + \log  x+1  + \log  x+1  + c(d)$ $\log  x-3  + \log  x+1  + \log  x+1  + c(d)$ $\log  x-3  + \log  x+1  + \log  x+1  + c(d)$ $\log  x-3  + \log  x+1  + \log  x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | (a) $\sin x + c$                                                       | (b) $\frac{1}{2}\sin x + c$                        | (c) $\cos x + c$                                                     | (d) $\frac{1}{2}\cos x + c$                                                             |
| 5) Area bounded by the curve $y = \frac{1}{x}$ between the limits 1 and 2 is  (a) $\log 2$ sq.units (b) $\log 5$ sq.units (c) $\log 3$ sq.units (d) $\log 4$ sq.units  6) The marginal cost function is $MC = 100 \sqrt{x}$ . find AC given that $TC = 0$ when the out put is zero is  (a) $\frac{200}{3}x^{\frac{1}{2}}$ (b) $\frac{200}{3}x^{\frac{3}{2}}$ (c) $\frac{200}{3x^{\frac{3}{2}}}$ (d) $\frac{200}{3x^{\frac{3}{2}}}$ 7) The order and degree of the differential equation $\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx} + 5}$ are respectively  (a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2  8) If $y = cx + c - c^3$ then its differential equation is  (a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ (b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} - \frac{dy}{dx}$ (c) $\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)^3 - x\frac{dy}{dx}$ (d) $\frac{d^2y}{dx^2} = 0$ 9) If $h = 1$ , then $\Delta(x^2) =$ (a) $2x$ (b) $2x - 1$ (c) $2x + 1$ (d) 1  10) For the given data find the value of $\Delta^3y_0$ is $\frac{x}{y} = \frac{b}{y} = \frac{b}$                                                                                                                                                                                                                                                                                                                                                                                                      | 4)  | $\int \left[ \frac{9}{x-3} - \frac{1}{x+1} \right] dx$ is              |                                                    |                                                                      |                                                                                         |
| 5) Area bounded by the curve $y = \frac{1}{x}$ between the limits 1 and 2 is  (a) $\log 2$ sq.units (b) $\log 5$ sq.units (c) $\log 3$ sq.units (d) $\log 4$ sq.units  6) The marginal cost function is $MC = 100 \sqrt{x}$ . find AC given that $TC = 0$ when the out put is zero is  (a) $\frac{200}{3}x^{\frac{1}{2}}$ (b) $\frac{200}{3}x^{\frac{3}{2}}$ (c) $\frac{200}{3x^{\frac{3}{2}}}$ (d) $\frac{200}{3x^{\frac{3}{2}}}$ 7) The order and degree of the differential equation $\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx} + 5}$ are respectively  (a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2  8) If $y = cx + c - c^3$ then its differential equation is  (a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ (b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} - \frac{dy}{dx}$ (c) $\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)^3 - x\frac{dy}{dx}$ (d) $\frac{d^2y}{dx^2} = 0$ 9) If $h = 1$ , then $\Delta(x^2) =$ (a) $2x$ (b) $2x - 1$ (c) $2x + 1$ (d) 1  10) For the given data find the value of $\Delta^3y_0$ is $\frac{x}{y} = \frac{b}{y} = \frac{b}$                                                                                                                                                                                                                                                                                                                                                                                                      |     | (a) $\log  x-3  - \log  x+1 $                                          | $+c(b) \log  x-3  + \log  x+1  +$                  | c(c) 9log x-3  - log x+1                                             | +c(d) 9log x-3  + log x+1  + c(d)                                                       |
| (a) $\log 2$ sq.units (b) $\log 5$ sq.units (c) $\log 3$ sq.units (d) $\log 4$ sq.units  6) The marginal cost function is $MC = 100 \sqrt{x}$ . find $AC$ given that $TC = 0$ when the out put is zero is  (a) $\frac{200}{3}x^{\frac{1}{2}}$ (b) $\frac{200}{3}x^{\frac{3}{2}}$ (c) $\frac{200}{3}\frac{3}{x^2}$ (d) $\frac{200}{3x^{\frac{1}{2}}}$ 7) The order and degree of the differential equation $\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx} + 5}$ are respectively  (a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2  8) If $y=cx+c-c^3$ then its differential equation is  (a) $y=\frac{dy}{dx}+\frac{dy}{dx}-\left(\frac{dy}{dx}\right)^3$ (b) $y=\left(\frac{dy}{dx}\right)^3=x\frac{dy}{dx}-\frac{dy}{dx}$ (c) $\frac{dy}{dx}+y=\left(\frac{dy}{dx}\right)^3-x\frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3}=0$ 9) If $h=1$ , then $\Delta(x^2)=$ (a) 2x (b) 2x-1 (c) 2x+1 (d) 1  10) For the given data find the value of $\Delta^3y_0$ is $\frac{x}{ x } = \frac{1}{ x$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5)  |                                                                        |                                                    |                                                                      |                                                                                         |
| (a) $\frac{200}{3}x^{\frac{1}{2}}$ (b) $\frac{200}{3}x^{\frac{3}{2}}$ (c) $\frac{200}{3x^{\frac{3}{2}}}$ (d) $\frac{200}{3x^{\frac{3}{2}}}$ The order and degree of the differential equation $\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx} + 5}$ are respectively  (a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2  8) If $y=cx+c-c^3$ then its differential equation is  (a) $y=\frac{dy}{dx}+\frac{dy}{dx}-\left(\frac{dy}{dx}\right)^3$ (b) $y=\left(\frac{dy}{dx}\right)^3=x\frac{dy}{dx}-\frac{dy}{dx}$ (c) $\frac{dy}{dx}+y=\left(\frac{dy}{dx}\right)^3-x\frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3}=0$ 9) If $h=1$ , then $\Delta(x^2)=$ (a) $2x$ (b) $2x-1$ (c) $2x+1$ (d) 1  10) For the given data find the value of $\Delta^3y_0$ is $\frac{x}{3} = \frac{x}{3} $                                                                                                                                                                                                                                                                                                       |     |                                                                        |                                                    |                                                                      | (d) log 4 sq.units                                                                      |
| (a) $\frac{200}{3}x^{\frac{1}{2}}$ (b) $\frac{200}{3}x^{\frac{3}{2}}$ (c) $\frac{200}{3x^{\frac{3}{2}}}$ (d) $\frac{200}{3x^{\frac{3}{2}}}$ The order and degree of the differential equation $\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{dy}{dx} + 5}$ are respectively  (a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2  8) If $y=cx+c-c^3$ then its differential equation is  (a) $y=\frac{dy}{dx}+\frac{dy}{dx}-\left(\frac{dy}{dx}\right)^3$ (b) $y=\left(\frac{dy}{dx}\right)^3=x\frac{dy}{dx}-\frac{dy}{dx}$ (c) $\frac{dy}{dx}+y=\left(\frac{dy}{dx}\right)^3-x\frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3}=0$ 9) If $h=1$ , then $\Delta(x^2)=$ (a) $2x$ (b) $2x-1$ (c) $2x+1$ (d) 1  10) For the given data find the value of $\Delta^3y_0$ is $\frac{x}{3} = \frac{x}{3} $                                                                                                                                                                                                                                                                                                       | 6)  | The marginal cost function                                             | is MC = $100 \sqrt{x}$ . find AC given             | that TC = 0 when the out put                                         | is zero is                                                                              |
| The order and degree of the differential equation $\sqrt{\frac{d^3y}{dx^2}} = \sqrt{\frac{dy}{dx} + 5}$ are respectively  (a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2  8) If $y=cx+c-c^3$ then its differential equation is (a) $y=\frac{dy}{dx}+\frac{dy}{dx}-\left(\frac{dy}{dx}\right)^3$ (b) $y=\left(\frac{dy}{dx}\right)^3=x\frac{dy}{dx}-\frac{dy}{dx}$ (c) $\frac{dy}{dx}+y=\left(\frac{dy}{dx}\right)^3-x\frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3}=0$ 9) If $h=1$ , then $\Delta(x^2)=$ (a) $2x$ (b) $2x-1$ (c) $2x+1$ (d) 1  10) For the given data find the value of $\Delta^3y_0$ is $\frac{\sqrt{5}}{\sqrt{5}}\frac{6}{\sqrt{9}}\frac{9}{11}$ $\frac{11}{\sqrt{12}}\frac{13}{15}\frac{18}{18}$ (a) 1 (b) 0 (c) 2 (d) -1  11) A variable that can assume any possible value between two points is called (a) discrete random variable (b) continuous random variable (c) discrete sample space (d) random variable  12) If we have $f(x)=2x$ , $0 \le x \le 1$ , then $f(x)$ is a (a) probability distribution (b) probability density function (c) distribution function (d) continuous random variable  13) If $Z$ is a standard normal variate, the proportion of items lying between $Z=-0.5$ and $Z=-3.0$ is (a) $0.4987$ (b) $0.1915$ (c) $0.3072$ (d) $0.3098$ 14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, $P(X \ge 5)$ is equal to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1                                                                      | 2                                                  | 200                                                                  |                                                                                         |
| <ul> <li>8) If y=cx + c - c³ then its differential equation is <ul> <li>(a) y = dy/dx + dy/dx - (dy/dx)³</li> <li>(b) y = (dy/dx)³ = x dy/dx - dy/dx</li> <li>(c) dy/dx + y = (dy/dx)³ - x dy/dx</li> <li>(d) d³y/dx³ = 0</li> </ul> </li> <li>9) If h = 1, then Δ(x²) = <ul> <li>(a) 2x</li> <li>(b) 2x - 1</li> <li>(c) 2x + 1</li> <li>(d) 1</li> </ul> </li> <li>10) For the given data find the value of Δ³y₀ is <ul> <li>x5 6 9 11</li> <li>y12 3 15 18</li> <li>(a) 1</li> <li>(b) 0</li> <li>(c) 2</li> <li>(d) -1</li> </ul> </li> <li>11) A variable that can assume any possible value between two points is called <ul> <li>(a) discrete random variable</li> <li>(b) continuous random variable</li> <li>(c) discrete sample space</li> <li>(d) random variable</li> </ul> </li> <li>12) If we have f(x)=2x, 0 ≤ x ≤ 1, then f(x) is a <ul> <li>(a) probability distribution</li> <li>(b) probability density function</li> <li>(c) distribution function</li> <li>(d) continuous random variable</li> </ul> </li> <li>13) If Z is a standard normal variate, the proportion of items lying between Z = -0.5 and Z = -3.0 is <ul> <li>(a) 0.4987</li> <li>(b) 0.1915</li> <li>(c) 0.3072</li> <li>(d) 0.3098</li> </ul> </li> <li>14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7)  | The order and degree of the                                            | e differential equation $\sqrt{rac{d^2y}{dx^2}}=$ | 0.c -                                                                | $3x$ $^2$                                                                               |
| (a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ (b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} - \frac{dy}{dx}$ (c) $\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)^3 - x\frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3} = 0$ 9) If $h = 1$ , then $\Delta(x^2) =$ (a) $2x$ (b) $2x - 1$ (c) $2x + 1$ (d) $1$ 10) For the given data find the value of $\Delta^3y_0$ is $ \frac{x5}{4} + \frac{6}{9} = \frac{9}{11} $ $ \frac{y_1^2}{y_1^2} = \frac{1}{315} = \frac{1}{18} $ (a) $1$ (b) $0$ (c) $2$ (d) $-1$ 11) A variable that can assume any possible value between two points is called (a) discrete random variable (b) continuous random variable (c) discrete sample space (d) random variable  12) If we have $f(x) = 2x$ , $0 \le x \le 1$ , then $f(x)$ is a (a) probability distribution (b) probability density function (c) distribution function (d) continuous random variable  13) If $Z$ is a standard normal variate, the proportion of items lying between $Z = -0.5$ and $Z = -3.0$ is (a) $0.4987$ (b) $0.1915$ (c) $0.3072$ (d) $0.3098$ 14) If for a binomial distribution $b(n,p)$ mean $Z = 4$ and variance $Z = 4/3$ , the probability, $Z = 5$ is equal to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | (a) 2 and 3                                                            | (b) 3 and 2                                        | (c) 2 and 1                                                          | (d) 2 and 2                                                                             |
| (a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ (b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} - \frac{dy}{dx}$ (c) $\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)^3 - x\frac{dy}{dx}$ (d) $\frac{d^3y}{dx^3} = 0$ 9) If $h = 1$ , then $\Delta(x^2) =$ (a) $2x$ (b) $2x - 1$ (c) $2x + 1$ (d) $1$ 10) For the given data find the value of $\Delta^3y_0$ is $ \frac{x5}{4} + \frac{6}{9} = \frac{9}{11} $ $ \frac{y_1^2}{y_1^2} = \frac{1}{315} = \frac{1}{18} $ (a) $1$ (b) $0$ (c) $2$ (d) $-1$ 11) A variable that can assume any possible value between two points is called (a) discrete random variable (b) continuous random variable (c) discrete sample space (d) random variable  12) If we have $f(x) = 2x$ , $0 \le x \le 1$ , then $f(x)$ is a (a) probability distribution (b) probability density function (c) distribution function (d) continuous random variable  13) If $Z$ is a standard normal variate, the proportion of items lying between $Z = -0.5$ and $Z = -3.0$ is (a) $0.4987$ (b) $0.1915$ (c) $0.3072$ (d) $0.3098$ 14) If for a binomial distribution $b(n,p)$ mean $Z = 4$ and variance $Z = 4/3$ , the probability, $Z = 5$ is equal to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8)  | If $y=cx + c - c^3$ then its diffe                                     | erential equation is                               |                                                                      |                                                                                         |
| (a) $2x$ (b) $2x-1$ (c) $2x+1$ (d) $1$ 10) For the given data find the value of $\Delta^3 y_0$ is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | (a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$ | (b) $y=\left(rac{dy}{dx} ight)^3=xrac{dy}{dx}$ — | $\frac{dy}{dx}$ (c) $\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)$ | $\left(\frac{d}{dx}\right)^3 - x\frac{dy}{dx} \qquad \qquad (d)  \frac{d^3y}{dx^3} = 0$ |
| (a) $2x$ (b) $2x-1$ (c) $2x+1$ (d) $1$ 10) For the given data find the value of $\Delta^3 y_0$ is $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9)  | If $h = 1$ , then $\Delta(x^2) =$                                      |                                                    | ,                                                                    | ,                                                                                       |
| x5 6 9 11 y12131518 (a) 1 (b) 0 (c) 2 (d) -1  11) A variable that can assume any possible value between two points is called (a) discrete random variable (b) continuous random variable (c) discrete sample space (d) random variable  12) If we have f(x)=2x, 0≤ x≤ 1, then f (x) is a (a) probability distribution (b) probability density function (c) distribution function (d) continuous random variable  13) If Z is a standard normal variate, the proportion of items lying between Z = -0.5 and Z = -3.0 is (a) 0.4987 (b) 0.1915 (c) 0.3072 (d) 0.3098  14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                                        | b) 2x -1                                           | (c) $2x + 1$                                                         | (d) 1                                                                                   |
| (a) 1 (b) 0 (c) 2 (d) -1  11) A variable that can assume any possible value between two points is called (a) discrete random variable (b) continuous random variable (c) discrete sample space (d) random variable  12) If we have f(x)=2x, 0≤ x≤ 1, then f (x) is a (a) probability distribution (b) probability density function (c) distribution function (d) continuous random variable  13) If Z is a standard normal variate, the proportion of items lying between Z = -0.5 and Z = -3.0 is (a) 0.4987 (b) 0.1915 (c) 0.3072 (d) 0.3098  14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10) | For the given data find the v                                          | value of $\Delta^3 y_0$ is                         |                                                                      |                                                                                         |
| (a) 1 (b) 0 (c) 2 (d) -1  11) A variable that can assume any possible value between two points is called (a) discrete random variable (b) continuous random variable (c) discrete sample space (d) random variable  12) If we have f(x)=2x, 0≤ x≤ 1, then f (x) is a (a) probability distribution (b) probability density function (c) distribution function (d) continuous random variable  13) If Z is a standard normal variate, the proportion of items lying between Z = -0.5 and Z = -3.0 is (a) 0.4987 (b) 0.1915 (c) 0.3072 (d) 0.3098  14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | x5 6 9 11                                                              |                                                    |                                                                      |                                                                                         |
| <ul> <li>11) A variable that can assume any possible value between two points is called <ul> <li>(a) discrete random variable</li> <li>(b) continuous random variable</li> <li>(c) discrete sample space</li> <li>(d) random variable</li> </ul> </li> <li>12) If we have f(x)=2x, 0≤ x≤ 1, then f (x) is a <ul> <li>(a) probability distribution</li> <li>(b) probability density function</li> <li>(c) distribution function</li> <li>(d) continuous random variable</li> </ul> </li> <li>13) If Z is a standard normal variate, the proportion of items lying between Z = -0.5 and Z = -3.0 is <ul> <li>(a) 0.4987</li> <li>(b) 0.1915</li> <li>(c) 0.3072</li> <li>(d) 0.3098</li> </ul> </li> <li>14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | y12131518                                                              |                                                    |                                                                      |                                                                                         |
| <ul> <li>(a) discrete random variable</li> <li>(b) continuous random variable</li> <li>(c) discrete sample space</li> <li>(d) random variable</li> <li>12) If we have f(x)=2x, 0≤ x≤ 1, then f (x) is a</li> <li>(a) probability distribution</li> <li>(b) probability density function</li> <li>(c) distribution function</li> <li>(d) continuous random variable</li> <li>13) If Z is a standard normal variate, the proportion of items lying between Z = -0.5 and Z = -3.0 is</li> <li>(a) 0.4987</li> <li>(b) 0.1915</li> <li>(c) 0.3072</li> <li>(d) 0.3098</li> <li>14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | (a) 1                                                                  | (b) 0                                              | (c) 2                                                                | (d) -1                                                                                  |
| <ul> <li>12) If we have f(x)=2x, 0≤ x≤ 1, then f (x) is a <ul> <li>(a) probability distribution</li> <li>(b) probability density function</li> <li>(c) distribution function</li> <li>(d) continuous random variable</li> </ul> </li> <li>13) If Z is a standard normal variate, the proportion of items lying between Z = -0.5 and Z = -3.0 is <ul> <li>(a) 0.4987</li> <li>(b) 0.1915</li> <li>(c) 0.3072</li> <li>(d) 0.3098</li> </ul> </li> <li>14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11) | A variable that can assume a                                           | any possible value between two p                   | oints is called                                                      |                                                                                         |
| <ul> <li>(a) probability distribution (b) probability density function (c) distribution function (d) continuous random variable</li> <li>13) If Z is a standard normal variate, the proportion of items lying between Z = -0.5 and Z = -3.0 is <ul> <li>(a) 0.4987</li> <li>(b) 0.1915</li> <li>(c) 0.3072</li> <li>(d) 0.3098</li> </ul> </li> <li>14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | (a) discrete random variable                                           | (b) continuous random varia                        | able (c) discrete sample                                             | space (d) random variable                                                               |
| <ul> <li>13) If Z is a standard normal variate, the proportion of items lying between Z = -0.5 and Z = -3.0 is <ul> <li>(a) 0.4987</li> <li>(b) 0.1915</li> <li>(c) 0.3072</li> <li>(d) 0.3098</li> </ul> </li> <li>14) If for a binomial distribution b(n,p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12) | If we have $f(x)=2x$ , $0 \le x \le$                                   | 1, then $f(x)$ is a                                |                                                                      |                                                                                         |
| (a) $0.4987$ (b) $0.1915$ (c) $0.3072$ (d) $0.3098$ 14) If for a binomial distribution $b(n,p)$ mean = 4 and variance = $4/3$ , the probability, $P(X \ge 5)$ is equal to :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | (a) probability distribution                                           | (b) probability density function                   | (c) distribution function                                            | (d) continuous random variable                                                          |
| 14) If for a binomial distribution $b(n,p)$ mean = 4 and variance = $4/3$ , the probability, $P(X \ge 5)$ is equal to :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13) | If Z is a standard normal va                                           | riate, the proportion of items lying               | g between $Z = -0.5$ and $Z = -3$                                    | .0 is                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | (a) 0.4987                                                             | (b) 0.1915                                         | (c) 0.3072                                                           | (d) 0.3098                                                                              |
| (2) (2) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14) | If for a binomial distribution                                         | n $b(n,p)$ mean = 4 and variance =                 | 4/3, the probability, $P(X \ge 5)$ is                                | s equal to:                                                                             |
| (a) $(2/3)^{\circ}$ (b) $(2/3)^{\circ}(1/3)$ (c) $(1/3)^{\circ}$ (d) $4(2/3)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | (a) $(2/3)^6$                                                          | (b) $(2/3)^5(1/3)$                                 | (c) $(1/3)^6$                                                        | (d) $4(2/3)^6$                                                                          |
| 15) A of statistical individuals in a population is called a sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15) | A of statistical                                                       | individuals in a population is call                | led a sample.                                                        |                                                                                         |
| (a) Infinite set (b) finite subset (c) finite set (d) entire set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | (a) Infinite set                                                       | (b) finite subset                                  | (c) finite set                                                       | (d) entire set                                                                          |
| 16) Errors in sampling are of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16) | Errors in sampling are of                                              |                                                    |                                                                      |                                                                                         |
| (a) Two types (b) three types (c) four types (d) five types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | (a) Two types                                                          | (b) three types                                    | (c) four types                                                       | (d) five types                                                                          |
| 17) A time series consists of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17) | A time series consists of                                              |                                                    |                                                                      |                                                                                         |
| (a) Five components (b) Four components (c) Three components (d) Two components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | (a) Five components                                                    | (b) Four components                                | (c) Three components                                                 | (d) Two components                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                                                        |                                                    |                                                                      |                                                                                         |

- 18) The seasonal variation means the variations occurring with in
  - (a) A number of years
- (b) within a year
- (c) within a month
- (d) within a week

- 19) In a non degenerate solution number of allocations is
  - (a) Equal to m+n-1
- (b) Equal to m+n+1
- (c) Not equal to m+n-1
- (d) Not equal to m+n+1
- 20) If number of sources is not equal to number of destinations, the assignment problem is called\_\_\_\_
  - (a) balanced
- (b) unsymmetric
- (c) symmetric
- (d) unbalanced

 $7 \times 2 = 14$ 

21) Solve the following equations by using Cramer's rule

$$2x + 3y = 7$$
;  $3x + 5y = 9$ 

22) Integrate the following with respect to x.

$$\frac{x^3}{x+2}$$

- 23) Using integration, find the area of the region bounded by the line y 1 = x, the x axis and the ordinates x = -2, x = 3.
- 24) Solve: ydx xdy = 0
- 25) Find the missing entry in the following table

| X  | 0 | 1 | 2 | 3 | 4  |
|----|---|---|---|---|----|
| Уx | 1 | 3 | 9 | - | 81 |

26) The discrete random variable X has the following probability function

P(X=x)={
$$kx$$
  $x=2,4,6$  where k is a constant. Show that  $k=\frac{1}{18}$   $k(x-2)$   $x=8$   $0$   $otherwisde$ 

- 27) Mention the properties of binomial distribution.
- 28) What is standard error?
- 29) Define secular trend.
- 30) Write mathematical form of transportation problem.

 $7 \times 3 = 21$ 

- 31) Show that the equations 2x+y+z=5, x+y+z=4, x-y+2z=1 are consistent and hence solve them.
- 32) Evaluate  $\int \frac{2x^2-14x+24}{x-3} dx$
- 33) Find the area of the region bounded by the parabola  $y = 4-x^2$ , x axis and the lines x = 0, x = 2
- 34) Solve 9y'' 12y' + 4y = 0
- 35) Evaluate  $\Delta\left[\frac{5x+12}{x^2+5x+6}\right]$  by taking '1' as the interval of differencing.
- 36) Two unbiased dice are thrown simultaneously and sum of the upturned faces considered as random variable. Construct a probability mass function.



- 37) In tossing of a five fair coin, find the chance of getting exactly 3 heads.
- 38) Using the Kendall-Babington Smith Random number table, Draw5 random samples.

| 23 | 15 | 75 | 48 | 59 | 01 | 83 | 72 | 59 | 93 | 76 | 24 | 97 | 08 | 86 | 95 | 23 | 03 | 67 | 44 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 05 | 54 | 55 | 50 | 43 | 10 | 53 | 74 | 35 | 08 | 90 | 61 | 18 | 37 | 44 | 10 | 96 | 22 | 13 | 43 |
| 14 | 87 | 16 | 03 | 50 | 32 | 40 | 43 | 62 | 23 | 50 | 05 | 10 | 03 | 22 | 11 | 54 | 36 | 08 | 34 |
| 38 | 97 | 67 | 49 | 51 | 94 | 05 | 17 | 58 | 53 | 78 | 80 | 59 | 01 | 94 | 32 | 42 | 87 | 16 | 95 |
| 97 | 31 | 26 | 17 | 18 | 99 | 75 | 53 | 08 | 70 | 94 | 25 | 12 | 58 | 41 | 54 | 88 | 21 | 05 | 13 |

39) Fit a trend line by the method of semi-averages for the given data.

| Year       | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 |
|------------|------|------|------|------|------|------|------|
| Production | 105  | 115  | 120  | 100  | 110  | 125  | 135  |

40) Determine an initial basic feasible solution to the following transportation problem using North West corner rule.

|             | $D_{1}$ | $D_2$ | $D_3$ | $D_4$ | Availability |
|-------------|---------|-------|-------|-------|--------------|
| $O_1$       | 6       | 4     | 1     | 5     | 14           |
| $O_2$       | 8       | 9     | 2     | 7     | 16           |
| $O_3$       | 4       | 3     | 6     | 2     | 5            |
| Requirement | 6       | 10    | 15    | 4     | 35           |

Here O<sub>i</sub> and D<sub>i</sub> represent ith origin and jth destination.

 $7 \times 5 = 35$ 

41) a) In year 2000 world gold production was 2547 metric tons and it was growing exponentially at the rate of 0.6% per year. If the growth continues at this rate, how many tons of gold will be produced from 2000 to 2013? [ $e^{0.078} = 1.0811$ )

(OR)

b) Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

|     | hines |
|-----|-------|
| mac | nines |

|      |   | I  | II | III | IV |
|------|---|----|----|-----|----|
|      | A | 10 | 12 | 19  | 11 |
|      | B | 5  | 10 | 7   | 8  |
| jobs | C | 12 | 14 | 13  | 11 |
|      | D | 8  | 15 | 11  | 9  |

42) a) Using graphic method, find the value of y when x = 38 from the following data:

| X | 10 | 20 | 30 | 40 | 50 | 60 |
|---|----|----|----|----|----|----|
| y | 63 | 55 | 44 | 34 | 29 | 22 |

(OR)

b) Calculate Fisher's price index number and show that it satisfies both Time Reversal Test and Factor Reversal Test for data given below.

| 0             |       |      |          |      |  |
|---------------|-------|------|----------|------|--|
| Commodities   | Price | ;    | Quandity |      |  |
| Commodities   | 2003  | 2009 | 2003     | 2009 |  |
| Rice          | 10    | 13   | 4        | 6    |  |
| Wheat         | 125   | 18   | 7        | 8    |  |
| Rent          | 25    | 29   | 5        | 9    |  |
| Fuel          | 2511  | 14   | 8        | 10   |  |
| Miscellaneous | 14    | 17   | 6        | 7    |  |

- 43) a) Evaluate  $\int dx$   $\left[\frac{1}{\log x} \frac{1}{(\log x)^2}\right]$ (OR)
  - b) Consider a random variable X with probability density function  $f(x)=\{4x^2, if 0 < x < 1 \}$ 0, otherwise

Find E(X) and V(X)

44) a) Solve by Cramer's rule x+y+z=4,2x-y+3z=1,3x+2y-z=1

(OR

- b) The marginal cost function of a commodity in a firm is  $2 + e^{3x}$  where X is the output. Find the total cost and average cost function if the fixed cost is Rs. 500.
- 45) a) Solve  $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$

(OR)

- b) An ambulance service claims that it takes on the average 8.9 minutes to reach its destination in emergency calls. To check on this claim, the agency which licenses ambulance services has them timed on 50 emergency calls, getting a mean of 9.3 minutes with a standard deviation of 1.6 minutes. What can they conclude at the level of significance
- 46) a) For what values of k, the system of equations kx+y+z=1,x+ky+z=1,x+y+kz=1 have
  - (I) Unique solution
  - (ii) More than one solution
  - (iii) no solution

(OR)

- b) Assuming one in 80 births is a case of twins, calculate the probability of 2 or more sets of twins on a day when 30 births occur.
- 47) a) Suppose that the quantity needed  $Q_d = 42$  -4p-4  $\frac{dp}{dt} + \frac{d^2p}{dt^2}$  and quantity supplied  $Q_s$ =-6+8p where p is the price. Find the s equilibrium price for market clearance.

(OR)

b) Using Lagrange's formula find the value of y when x = 4 from the following table.

| X | 0   | 3   | 5   | 6   | 8   |
|---|-----|-----|-----|-----|-----|
| v | 276 | 460 | 414 | 343 | 110 |

\*\*\*\*\*\*\*\*\*