RAVI MATHS TUITION CENTER, GKM COLONY, CHENNAI- 82. PH: 8056206308 Date: 21-Oct-19

12BM HALF YEARLY MODEL PAPER 2

12th Standard **Business Maths**

Reg.No.:

Exa	ım Time : 02:30:00 Hrs			Total Marks : 90
				$20 \times 1 = 20$
1)	The rank of m×n matrix wh	nose elements are unity is		
	(a) 0	(b) 1	(c) m	(d) n
2)	if $ A \neq 0$, then A is			
	(a) non- singular matrix	(b) singular matrix	x (c) zero matrix	(d) none of these
3)	$\int \frac{\sin 5x - \sin x}{\cos 3x} dx$			
	(a) $-\cos 2x + c$	(b) $-\cos 2x + c$	(c) $-\frac{1}{4}\cos 2x \ c$	(d) $-4\cos 2x + c$
4)	$\int \frac{dx}{\sqrt{x^2-36}}$ is			
		$\log x + \sqrt{x^2 - 36} + c $	(c) $\log x - \sqrt{x^2 - 36} + c$	(d) $\left log \left x^2 + \sqrt{x^2 - 36} \right + c \right $
5)	$\int e^x f(x) + f'(x) dx = \underline{\hspace{1cm}}$			
		(b) $e^x + f(x)$	(c) $2e^x f(x)$	(d) $e^x - f(x)$
6)	Area bounded by the curve	$y = e^{-2x}$ between the limits $0 \le$	$\leq x \leq \infty \text{ is}$	
	(a) 1 sq.units	(b) $\frac{1}{2}$ sq.unit	(c) 5 sq.units	(d) 2 sq.units
7)	When $x_0 = 2$ and $P_0 = 12$ th	ne producer's surplus for the sup	pply function $P_s = 2x^2 + 4$ is	
	(a) $\frac{31}{5}$ units	(b) $\frac{31}{2}$ units	(c) $\frac{32}{3}$ units	(d) $\frac{30}{7}$ units
8)	If $y=cx + c - c^3$ then its diff	erential equation is		
	` '	` ′	$-\frac{dy}{dx} \qquad \qquad \text{(c)} \frac{dy}{dx} + y =$	$=\left(rac{dy}{dx} ight)^3-xrac{dy}{dx}$ (d) $rac{d^3y}{dx^3}=0$
9)	The integrating factor of x	$\frac{dy}{dx}$ - y = x ² is		
	(a) $\frac{-1}{x}$	(b) $\frac{1}{x}$	(c) log x	(d) x
10)	E f(x)=			
	(a) $f(x-h)$	(b) $f(x)$	(c) $f(x+h)$	(d) $f(x+2h)$
11)	For the given data find the	value of $\Delta^3 y_0$ is		
	x5 6 9 11			
	y12131518			
	(a) 1	(b) 0	(c) 2	(d) -1
12)	If X is a discrete random va	ariable and p x () is the probabil	ility of X, then the expected	value of this random variable is equal to
	(a) $\sum f(x)$ (b)	$\sum [x+f(x)]$	(c) $\sum f(x) + x$	(d) $\sum xp(x)$
13)	A probability density function	ion may be represented by:		
	(a) table (b) table	(c) mathematical equat	ion	(d) both (b) and (c)
14)	The height of persons in a c	country is a random variable of	the type	
	(a) discrete random variable	(b) continuous random	variable (c) both (a)	and (b) (d) neither (a) nor (b)
15)	If $X \sim N(9,81)$ the standard			
	(a) $Z = \frac{X-81}{9}$	(b) $Z = \frac{X-9}{81}$	(c) $Z = \frac{X-9}{9}$	(d) $Z = \frac{9-X}{9}$
16)	Cape town is estimated to h	nave 21% of homes whose own	ers subscribe to the satelite so	ervice, DSTV. If a random sample of
	your home in taken, what is	s the probability that all four ho	ome subscribe to DSTV?	
	(a) 0.2100	(b) 0.5000	(c) 0.8791	(d) 0.0019
17)	Let z be a standard normal	variable. If the area to the right	of z is 0.8413, then the value	e of z must be:
	(a) 1.00	(b) -1.00	(c) 0.00	(d) -0.41
18)	Errors in sampling are of			

(a) Two types	(b) three types	(c) four types	(d) five types
19) The component of a time	series attached to long term variati	on is trended as	
(a) Cyclic variation	(b) Secular variations	(c) Irregular variation	(d) Seasonal variations
20) The Penalty in VAM repr	esents difference between the first		
(a) Two largest costs	(b) Largest and Smallest costs	(c) Smallest two co	osts (d) None of these
ANY 7			$7 \times 2 = 14$
21) A total of Rs 8,600 was in	nvested in two accounts. One accounts	Int earned $4\frac{3}{4}$ % annual	
interest and the other earn	$1 - 1 = 1$ med $6\frac{1}{2}$ % annual interest. If the tot	al interest for one year	
was Rs 431.25, how muc	h was invested in each account? (U	se determinant method).	
22) If $f'(x) = 8x^3 - 2x$ and f	(2)=8, then find f(x)		
23) The marginal cost function	on of a product is given by $\frac{dC}{dx} = 10$	$00 - 10x + 0.1x^2$ where x is the	e output. Obtain the total and the
average cost function of t	the firm under the assumption, that	its fixed cost is Rs. 500.	
24) Solve the following differ	rential equations		
$(D^2+2D+3)y=0$			
25) Find the missing entry in	the following table		
x 0123 4			
$y_x 1 3 9 - 81 $			
	nutes) that a certain person speaks		
probability function spec-	ified by the probability density fund		
27)		0 , o	therwise
27) Consider a random varial	_		
$egin{aligned} ext{f(x)=} & \{3x^2, if 0 < x < \ 0, otherwise \end{aligned}$	1		
Find E(X) and V(3X-2)			
28) State any three merits of	stratified random sampling		
•	ion by the method of a five-yearly	period of moving average for t	the following data:
	80 1981 1982 1983 1984 1985 1986 1		ine following data:
	3 117 128 125 124 130 114 1	- 	
30) Write mathematical form			
ANY 7			$7 \times 3 = 21$
	the following traits. If he makes a h	it (S), there is a 25%	
	a hit his next time at bat. If he fails		
	a hit his next time at bat. Find the t	` '	
for the data and determin	e Akash's long- range batting avera	ge.	
32) Evaluate $\int x^3 \log x dx$			
33) Find the area bounded by	y = 4x + 3 with x- axis between the	e lines $x = 1$ and $x = 4$	
	tion of the family of curves $y = e^x$		b are arbitrary constants.
	tion of the family of straight lines y		•
(i) m is the arbitrary cons	, ,		
(ii) c is the arbitrary cons			

(iii) m and c both are arbitrary constants.

37)

36) Construct a forward difference table for $y = f(x) = x^3 + 2x + 1$ for x = 1,2,3,4,5

Construct the distribution function for the discrete random variable X whose probability distribution is given below. Also draw a graph of p(x) and F(x).

X = X	1	2	3	4	5	6	7
P(x)	0.10	0.12	0.20	0.30	0.15	0.08	0.05

- 38) The marks obtained in a certain exam follow normal distribution with mean 45 and SD 10. If 1,300 students appeared at the examination, calculate the number of students scoring
 - (i) less than 35 marks and
 - (ii) more than 65 marks.
- 39) The following data gives the readings for 8 samples of size 6 each in the production of a certain product. Find the control limits using mean chart.

Sample	1	2	3	4	5	6
Mean	300	342	351	319	326	333
Range	25	37	20	28	30	22

Given for n = 6, $A_2 = 0.483$,

40) Consider the following pay-off (profit) matrix Action States

Action	States					
Action	(s_1)	(s ₂)	(s ₃)	(s ₄)		
A_1	5	10	18	25		
A_2	8	7	8	23		
A_3	21	18	12	21		
A_4	30	22	19	15		

Determine best action using maximin principle.

ANY 7 $7 \times 3 = 35$

41) a) An automobile company uses three types of Steel S₁, S₂ and S₃ for providing three different types of Cars C₁, C₂ and C₃. Steel requirement R (in tonnes) for each type of car and total available steel of all the three types are summarized in the following table.

Types of Steel	Types of	Car	Total Steel	
Types of Steel	C_1	C_2	C_3	available
S_1	3	2	1	28
S_2	1	1	2	13
S_3	2	2	2	14

Determine the number of Cars of each type which can be produced by Cramer's rule.

(OR)

b) The elasticity of demand with respect to price p for a commodity is $\eta_d = \frac{p+2p^2}{100-p-p^2}$. Find demand function where price is Rs. 5 and the demand is 70.

42) a) Solve
$$(x^2 + 1)\frac{dy}{dx} + 2xy = 4x^2$$

(OR)

b)

Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows. Determine the optimum assignment schedule.

		Job					
		1	2	3	4	5	
	A	8	4	2	6	1	
Person	B	0	9	5	5	4	
	C	3	8	9	2	6	
	D	4	3	1	0	3	
	E	9	5	8	9	5	

43) a) Determine the mean and variance of a discrete random variable, given its distribution as follows.

				6
2	3	4	5	1
	$\frac{2}{6}$	$\frac{2}{6} \frac{3}{6}$	$\frac{2}{6} \frac{3}{6} \frac{4}{6}$	$\frac{2}{6} \frac{3}{6} \frac{4}{6} \frac{5}{6}$

(OR)

- b) A manufacturer of ball pens claims that a certain pen he manufactures has a mean writing life of 400 pages with a standard deviation of 20 pages. A purchasing agent selects a sample of 100 pens and puts them for test. The mean writing life for the sample was 390 pages. Should the purchasing agent reject the manufactures claim at 1% level?
- 44) a) Using integrals as limit of sums, evaluate $\int_2^4{(2x-1)dx}$

(OR)

b) Using Lagrange's formula find the value of y when x = 4 from the following table.

ŀ	X	0	3	5	6	8
	y	276	460	414	343	110

45) a) Using determinants, find the quadratic defined by $f(x) = ax^2 + bx + c$ if f(1) = 0, f(2) = -2 and f(3) = -6.

(OR)

b) The probability density function of a random variable X is

$$f(x)=ke^{-|x|}$$
, $-\infty < x < \infty$

Find the value of k and also find mean and variance for the random variable.

46) a) Evaluate
$$\int e^{2x} \left[\frac{2x-1}{4x^2} \right] dx$$

(OR)

b) Calculate Fisher's price index number and show that it satisfies both Time Reversal Test and Factor Reversal Test for data given below.

	Price	;	Quandity		
Commodities	2003	2009	2003	2009	
Rice	10	13	4	6	
Wheat	125	18	7	8	
Rent	25	29	5	9	
Fuel	2511	14	8	10	
Miscellaneous	14	17	6	7	

47) a) The demand and supply curves are given by $P_d = \frac{16}{x+4}$ and $P_s = \frac{x}{2}$. Find the Consumer's surplus and producer's surplus at the market equilibrium price.

(OR)

b) The population of a certain town is as follows

	Year : x	1941	1951	1961	1971	1981	1991
-	Population in lakhs:y	20	24	29	36	46	51

Using appropriate interpolation formula, estimate the population during the period 1946.
