RAVI MATHS TUITION CENTER, CHENNAI – 82. PH - 8056206308

12TH MATHS MODEL PAPER 5

12th Standard

Maths	

Reg.No.:				
	Reg.No.:			

Exam Time: 03:00:00 Hrs

Total Marks: 90 $20 \times 1 = 20$

Date: 29-Nov-19

		PARTI	A T T	2
1)	ICAD 1C '	ANSWER A		0
1)		nvertible matrices of some order, the		not true? (d) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$
2)	(a) $adj A = A A^{-1}$	(b) $adj(AB) = (adj A)(adj B)$	(c) $\det A^{-1} = (\det A)^{-1}$	(d) (ABC) 1 – C 1B 1A 1
2)	$If (AB)^{-1} = \begin{bmatrix} 12 \\ -19 \end{bmatrix}$	$\begin{bmatrix} -17 \\ 27 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then	$_{1}B^{-1}=$	
	(a) $\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$	$ \begin{pmatrix} b \\ 8 & 5 \\ 3 & 2 \end{pmatrix} $	$\begin{pmatrix} c \\ 2 \\ 1 \end{pmatrix}$	$ \begin{pmatrix} (d) & 8 & -5 \\ -3 & 2 \end{pmatrix} $
3)	If $ z_1 =1, z_2 =2 z_3 =$	3 and $ 9z_1z_2+4z_1z_3+z_2z_3 =12$, then the	e value of $ z_1+z_2+z_3 $ is	
	(a) 1	(b) 2	(c) 3	(d) 4
4)	If z is a complex n	umber such that $z \in C/R$ and $z + \frac{1}{\epsilon}$	R then $ z $ is	
	(a) 0	(b) 1	(c) 2	(d) 3
5)		1999 definitely has a positive zero, if	` '	() -
,	(a) a≥0	(b) a > 0	(c) a<0	(d) a≤0
6)		of $\cos(\cos^{-1}x + 2\sin^{-1}x)$ is	. ,	.,
	(a) $-\sqrt{\frac{24}{25}}$	(b) $\sqrt{\frac{24}{25}}$	(c) $\frac{1}{5}$	(d) $-\frac{1}{5}$
7)	$tan^{-1}\left(\frac{1}{4}\right) + tan^{-1}$	$1\left(\frac{2}{3}\right)$ is equal to		
	(a) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$	(b) $\frac{1}{2}sin^{-1}\left(\frac{3}{5}\right)$	$(c) \frac{1}{2} tan^{-1} \left(\frac{3}{5}\right)$	(d) $tan^{-1}\left(\frac{1}{2}\right)$
8)	The radius of the c	ircle passing through the point(6,2) t	wo of whose diameter arex+y=	6
	and $x+2y=4$ is			
	(a) 10	(b) $2\sqrt{5}$	(c) 6	(d) 4
9)	The area of quadri	lateral formed with foci of the hyperl	$\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$ and $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$	= -1
				4
	(a) $4(a^2+b^2)$	(b) $2(a^2+b^2)$	(c) $a^2 + b^2$	(d) $\frac{1}{2}$ (a ² +b ²)
10)	If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, \vec{b}	$=\hat{i}+\hat{j}$, $\vec{c}=\hat{i}$ and $(\vec{a}\times\vec{b})\times\vec{c}=\lambda\vec{a}$	$\vec{i} + \mu \vec{b}$ then the value of $\lambda + \mu$	is
	(a) 0	(b) 1	(c) 6	(d) 3
11)	$\int_{\mathbf{f} \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c} \text{ are non-}$	coplanar, non-zero vectors such that	$[\vec{a} \ \vec{b} \ \vec{c}] = 3$ then $\{[\vec{a} \times \vec{b} \ \vec{b} \ \rangle$	$\langle \vec{c}, \vec{c} \times \vec{a} \rangle^2$ is equal to
	(a) 81	(b) 9	(c) 27	(d) 18
12	* /	e point on the curve $f(x) = \sqrt{8 - 2x}$		* /
-,	(a) -8	(b) -4	(c) -2	(d) 0
13		(0)		(u) 0
13,		ne normal to the curve $f(x) = 2\cos 4x$	at $x = \frac{\pi}{-}$	

			- -					
14)	The approximate change in	the volume V of a cube of side x	metres caused by increasing the	e side by 1% is				
	(a) 0.3 xdx m ³	(b) 0.03 xm^3	(c) $0.03.x^2 \text{ m}^3$	(d) $0.03x^3m^3$				
15)	If $g(x, y) = 3x^2 - 5y + 2y$, x	(t) = e^t and y(t) = $\cos t$, then $\frac{dg}{dt}$ is	s equal to					
	(a) $6e^{2t} + 5 \sin t - 4 \cos t \sin t$	(b) $6e^{2t}$ - $5\sin t + 4\cos t \sin t$	(c) $3e^{2t} + 5\sin t + 4\cos t\sin t$	(d) $3e^{2t} - 5\sin t + 4\cos t\sin t$				
16)	The value of $\int_0^\infty e^{-3x} x^2 dx$ is	S						
	(a) $\frac{7}{27}$	(b) $\frac{5}{27}$	(c) $\frac{4}{27}$	(d) $\frac{2}{27}$				
17)	If $\int_{a}^{a} \frac{1}{4+x^2} dx = \frac{\pi}{8}$ then a is							
	(a) 4	(b) 1	(c) 3	(d) 2				
18)	The integrating factor of the	e differential equation $\frac{dy}{dx} + y = \frac{1}{2}$	$\frac{y}{\lambda}$ is					
	(a) $\frac{x}{e^{\lambda}}$	(b) $\frac{e^{\lambda}}{x}$	(c) λe^x	(d) e ^x				
19)	The integrating factor of the	e differential equation $\frac{dy}{dx} + P(x)y =$	=Q(x) is x , then $P(x)$					
	(a) x	(b) $\frac{x^2}{2}$	(c) $\frac{1}{x}$	(d) $\frac{1}{r^2}$				
20)) 1	2		.				
If the function $f(x) = \frac{1}{12}$ for a < x < b, represents a probability density function of a continuous random variable								
	which of the followingcannot be the value of a and b?							
	(a) 0 and 12	(b) 5 and 17	(c) 7 and 19	(d) 16 and 24				
		PART II		$7 \times 2 = 14$				
ANSWER ANY 7 QUESTIONS IN WHICH QUESTION NO. 30 IS COMPULSORY 21) [1 2 3]								
								Find the rank of the matrix
22)	Find the square roots of 4+.	3i						
23)	3) Construct a cubic equation with roots 2,–2, and 4.							
24) Simplify								
	$\cos^{-1}\left(\cos\left(\frac{13\pi}{3}\right)\right)$							
25)	5) Find the vertices, foci for the hyperbola $9x^2-16y^2=144$.							
26)	Find the angle between the straight line $\vec{r} = (2\hat{i} + \hat{j} + \hat{k}) + t(\hat{i} - \hat{j} + \hat{k})$ and the plane 2x-y+z=5							
		l to the following curves at the gi						
	$y = x \sin x$ at $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$							
28)	\ /	ring radius 10 cm. Its radius decre	ases from 10 cm to 9-8 cm. Fin	d approximations for the following:				

(b) -4

(a) $-4\sqrt{3}$

change in the volume

 $\int_{\overline{\theta}}^{\pi} e^{x} \left(\frac{1 + \sin x}{1 + \cos x} \right) dx$

30)

29) Evaluate the following definite integrals:

(d) $4\sqrt{3}$

PART III $7 \times 3 = 21$

ANSWER ANY 7 QUESTIONS IN WHICH QUESTION NO. 40 IS COMPULSORY

31) Find adj(adj A) if adj $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$.

- Show that the points $1, \frac{-1}{2} + i \frac{\sqrt{3}}{2}$, and $\frac{-1}{2} i \frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle.
- 33) Solve the equation $x^4-9x^2+20=0$.
- 34) Find the value of $\tan^{-1}(-1) + \cos^{-1}(\frac{1}{2}) + \sin^{-1}(-\frac{1}{2})$
- 35) If the equation $3x^2+(3-p)xy+qy^2-2px=8pq$ represents a circle, find p and q. Also determine the centre and radius of the circle
- 36) Prove by vector method that the parallelograms on the same base and between the same parallels are equal in area.
- 37) Find the equation of the plane which passes through the point (3, 4, -1) and is parallel to the plane 2x 3y + 5z = 0. Also, find the distance between the two planes.
- 38) If $u=\sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, Show that $x \, x \, \frac{\partial u}{\partial x} + y \, \frac{\partial u}{\partial y} = \frac{1}{2} tanu$
- 39) Find, by integration, the volume of the solid generated by revolving about y-axis the region bounded by the curves $y = \log x$, y = 0, x = 0 and y = 2.
- 40) Let $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ be any three boolean matrices of the same type.

Find (AAB)VC

PART IV $7 \times 5 = 35$

ANSWER ALL

- 41) a) Find the area of the region bounded by $y = \cos x$, $y = \sin x$, the lines $x = \frac{\pi}{4}$ and $x = \frac{5\pi}{4}$.
 - b) Construct the truth table for $(p \lor q) \land (p \lor \neg q)$
- 42) a) Let $g(x,y)=x^3 yx + \sin(x+y)$, $x(t) = e^{3t}$, $y(t) = t^2$, $t \in \mathbb{R}$. Find $\frac{dg}{dt}$
 - Find the mean and variance of a random variable X, whose probability density function is $f(x) = \begin{cases} \lambda e^{-2x} & \text{for } \ge 0 \\ 0 & \text{otherwise} \end{cases}$
- 43) a) Find the intervals of monotonicity and local extrema of the function $f(x) = x \log x + 3x$.

(OR)

- b) Find the particular solution of $(1 + x^3) dy x^2 y dx = satisfying the condition <math>y(1) = 2$.
- 44) a) Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane passing through the points (-1, 2, 0), (2, 2, -1) and parallel to the straight line $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$

b) Find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$ at x = 2, y = 3 if $f(x,y) = 2x^2 + 3y^2 - 2xy$

45) a) Find the vertex, focus, equation of directrix and length of the latus rectum of the following: $x^2-2x+8y+17=0$

(OR)

- b) Find the shortest distance between the following pairs of lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$
- 46) a) Find all zeros of the polynomial x^6 - $3x^5$ - $5x^4$ + $22x^3$ - $39x^2$ -39x+135, if it is known that 1+2i and $\sqrt{3}$ are two of its zeros. (OR)
 - b) A concrete bridge is designed as a parabolic arch. The road over bridge is 40m long and the maximum height of the arch is 15m. Write the equation of the parabolic arch.
- a) The prices of three commodities A, B and C are Rs.x, y and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B. Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, P, Q and R earn Rs.15,000, Rs.1,000 and Rs.4,000 respectively. Find the prices per unit of A, B and C. (Use matrix inversion method to solve the problem.)

 (OR)
 - b) Solve the equation $z^3+8i=0$, where $z \in \mathbb{C}$
