RAVI MATHS TUITION CENTER, NEAR VILLIVAKKAM RLY STATION, CH-82. Whatsapp - 8056206308

REDUCED Differential Equations

12th Standard

Business Maths

REDUCED PORTION CHAPTER WISE STUDY MATERIALS INCLUDING

ANSWERS AVAILABLE. PDF COST RS. 150 ONLY. WHATSAPP - 8056206308
36 x 1 = 36 1) The degree of the differential equation $\frac{d^4y}{dx^2} = \frac{d^2y}{dx^2} + \frac{dy}{dx^2} = \frac{36}{2}$
The degree of the differential equation $\frac{d^4y}{dx^4} - \left(\frac{d^2y}{dx^2}\right)^4 + \frac{dy}{dx} = 3$
(a) 1 (b) 2 (c) 3 (d) 4 2) The order and degree of the differential equation
$\sqrt{rac{d^2y}{dx^2}}=\sqrt{rac{dy}{dx}+5}$ are respectively
(a) 2 and 3 (b) 3 and 2 (c) 2 and 1 (d) 2 and 2
3) The order and degree of the differential equation $\frac{3}{2} = \sqrt{\frac{3}{1-2}}$
$\left(rac{d^2y}{dx^2} ight)^{rac{3}{2}}-\sqrt{\left(rac{dy}{dx} ight)}-4=0$ are respectively
(a) 2 and 6 (b) 3 and 6 (c) 1 and 4 (d) 2 and 4
The differential equation $\left(\frac{dx}{dy}\right)^3 + 2y^{\frac{1}{2}}$ = x is
(a) of order 2 and (b) of order 1 and (c) of order 1 and (d) of order 1 and degree 1 degree 3 degree 6 degree 2 5) The differential equation formed by eliminating a and b from $y = ae^x + be^{-x}$ is
$y=ae^x+be^{-x}$ is (a) (b) (c) (d) $rac{d^2y}{dx^2}-y=0$ $rac{d^2y}{dx^2}-rac{dy}{dx}=0$ $rac{d^2y}{dx^2}=0$
6) The integrating factor of the differential equation $rac{dx}{dy} + Px = Q$
(a) $e^{\int Pdx}$ (b) $\int Pdx$ (c) $\int Pdy$ (d) $e^{\int Pdy}$
7) If y=cx + c- c ³ then its differential equation is
(a) (b) (c) $ du du (du)^3 \qquad (du)^3 du du \qquad du \qquad (du)^3 du du \qquad (du)^3 du (du)^3 $
$y=rac{dy}{dx}+rac{dy}{dx}-\left(rac{dy}{dx} ight)^3 \qquad \qquad y=\left(rac{dy}{dx} ight)^3=xrac{dy}{dx}-rac{dy}{dx} \qquad \qquad rac{dy}{dx}+y=\left(rac{dy}{dx} ight)^3-xrac{dy}{dx}$
8) The differential equation of $y = mx + c$ is (m and c are arbitrary constants)
(a) $\frac{d^2y}{dx^2} = 0$ (b) $y = x \frac{dy}{dx} + c$ (c) $xdy + ydx = 0$ (d) $ydx - xdy = 0$
⁹⁾ The particular integral of the differential equation is $\frac{d^2y}{dx^2} - 8\frac{dy}{dx}$ +16y =
2e ^{4x}
(a) $\frac{x^2 e^{4x}}{2!}$ (b) $\frac{e^{4x}}{2!}$ (c) $x^2 e^{4x}$ (d) $x e^{4x}$
10) Solution of $\frac{dy}{dx}$ + Px = 0
(a) $x=ce^{py}$ (b) $x=ce^{-py}$ (c) $x=py+c$ (d) $x=cy$ 11) The differential equation of $x^2+y^2=a^2$ (a) $xdy+ydx=0$ (b) $ydx-xdy=0$ (c) $xdx-ydx=0$ (d) $xdx+ydy=0$
(a) $xdy + ydx = 0$ (b) $ydx - xdy = 0$ (c) $xdx - ydx = 0$ (d) $xdx + ydy = 0$ 12) The general solution of the differential equation $\frac{dy}{dx} = \cos x$ is
(a) $y = (b)$ $y = (c)$ $y = \cos x + c$, c is an (d) $y = \sin x + c$, c is an sinx + 1 sinx - 2 arbitrary constant arbitrary constant
13) A homogeneous differential equation of the form $\frac{dy}{dx} = f(\frac{y}{x})$ can be solved
by making substitution,
(a) $y = vx$ (b) $v = yx$ (c) $x = vy$ (d) $x = v$ 14) A homogeneous differential equation of the form $\frac{dx}{dy} = f(\frac{y}{x})$ can be
o
solved by making substitution, (a) $x = v y$ (b) $y = v x$ (c) $y = v$ (d) $x = v$ 15) The variable separable form of $\frac{dy}{dx} = \frac{y(x-y)}{x(x+y)}$ by taking $y = vx$ and
The variable separable form of $\frac{dy}{dx} = \frac{y(x-y)}{x(x+y)}$ by taking y = vx and
$rac{dy}{dx} = v + x rac{dv}{dx}$ is
(a) (b) (c) (d)

$$(2v+v^2)dx=0$$
 $(2x+x^2)dv=0$ $(x+x^2)dv=0$ $(2x+x^2)dx=0$
36) The equation of ydx+xdy=e^{-xy} dx if it cuts the Y-axis is (a) e^{xy} (b) e^{xy}=c (c) e^{xy}=x+1 (d) e^{xy}=y+1 30 x 2 = 60

37) Find the order and degree of the following differential equations $rac{d^2y}{dx^2}+3\Big(rac{dy}{dx}\Big)^2+4y=0$

$$rac{d^2y}{dx^2} + 3{\left(rac{dy}{dx}
ight)}^2 + 4y = 0$$

38) Solve:
$$(x^2+x+1)dx+(y^2-y+3)dy = 0$$

39) Solve:
$$\frac{dy}{dx} = ae^y$$

40) Solve:
$$ydx - xdy = 0$$

41) Solve:
$$\frac{dy}{dx} = y \sin 2x$$

42) Find the curve whose gradient at any point P(x, y) on it is $\frac{x-a}{y-b}$ and which passes through the origin.

43) Find the order and degree of the following differential equations.

$$rac{d^2y}{dx^2} = \sqrt{y - rac{dy}{dx}} = 0$$

44) Find the order and degree of the following differential equations.

$$\frac{d^3y}{dx^3} = 0$$

45) Find the order and degree of the following differential equations. $\frac{d^2y}{dx^2}+y+\left(\frac{dy}{dx}-\frac{d^3y}{dx^3}\right)^{3/2}=0$

$$\left(rac{d^2y}{dx^2}+y+\left(rac{dy}{dx}-rac{d^3y}{dx^3}
ight)^{3/2}=0$$

46) Find the order and degree of the following differential equations. $(2 - y'')^2 = y''^2 + 2y'$

47) Find the order and degree of the following differential equations.

$$\left(rac{dy}{dx}
ight)^3 + y = x - rac{dx}{dy}$$

48) Find the differential equation of the following

$$xy = c^2$$

49) Find the differential equation of the following $x^2 + y^2 = a^2$ 50) Solve: $\frac{1+x^2}{1+y} = xy\frac{dy}{dx}$ 51) Solve: $\frac{dy}{dx} + e^x + ye^x = 0$

50) Solve:
$$\frac{1+x^2}{2} = xu^{\frac{dy}{2}}$$

51) Solve:
$$\frac{dy}{dx} + e^{x} + ye^{x} = 0$$

52) Solve:
$$\log\left(\frac{dy}{dx}\right)$$
 = ax + by

53) Write down the order and degree of the following differential equations.

$$\left(\frac{dy}{dx}\right)^3 - 4\left(\frac{dy}{dx}\right) + y = 3e^x$$
54) Write down the order and degree of the following differential equations.

$$\left(rac{dy}{dx}
ight)^2 - 7rac{d^3y}{dx^3} + yrac{d^2y}{dx^2} + 4rac{dy}{dx}$$
 -logx=0

55) Write down the order and degree of the following differential equations.

$$\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
 =4x

56) Write down the order and degree of the following differential equations.

$$\left[1+\left(rac{dy}{dx}
ight)^2
ight]^{rac{2}{3}}=rac{d^2y}{dx^2}$$

57) Find the differential equation for y=mx+ $\frac{a}{m}$ where m is arbitrary constant.

58) Form the differential equation of family of rectangular hyperbolas whose asymptotes are the Co-ordinate axes.

59) Solve: x dy + y dx = 0

60) Solve:
$$(x^2 - ay)dx = (ax-y^2)dy$$

61) Find the order and degree of the following differential equation $rac{d^2y}{dx^2}-2rac{dy}{dx}+3y=0$

62) Find the order and degree of the following differential equation $rac{d^2y}{dx^3}-3\Big(rac{dy}{dx}\Big)^6+2y=x^2$

63) Find the order and degree of the following differential equation

$$\left[1+rac{d^2y}{dx^2}
ight]^{rac{3}{2}}=arac{d^2y}{dx^2}$$

64) Find the order and degree of the following differential equation $y' + (y'')^2 = (x+y'')^2$

65) Find the order and degree of the following differential equation

$$rac{d^3y}{dx^3} - \left(rac{dy}{dx}
ight)^{rac{1}{2}} = 0$$

66) Find the order and degree of the following differential equation

$$y=2{\left(rac{dy}{dx}
ight)}^2+4{
m x}rac{dy}{dx}$$

REDUCED PORTION CHAPTER WISE STUDY MATERIALS INCLUDING ANSWERS AVAILABLE. PDF COST RS. 150 ONLY. WHATSAPP - 8056206308

67) Find the order and degree of the following differential equations.

$$rac{dy}{dx} + 2y = x^3$$

68) Find the differential equation of the following $y = cx + c - c^3$

69) Form the differential equation by eliminating α and β from $(x - \alpha)^2 + (y - \beta)^2 =$

 $24 \times 3 = 72$

70) Find the differential equation of the family of all straight lines passing through the origin.

71) Form the differential equation that represents all parabolas each of which has a latus rectum 4a and whose axes are parallel to the x axis.

72) Find the differential equation of all circles passing through the origin and having their centers on the y axis.

73) Find the differential equation of the family of parabola with foci at the origin and axis along the x-axis.

74) Find the differential equation of the family of curves $y = e^x (a\cos x + b\sin x)$ where a and b are arbitrary constants.

75) Find the differential equation of the family of curves $y = \frac{a}{x} + b$ where a and b are arbitrary constants

76) Find the differential equation corresponding to $y=ae^{4x} + be^{-x}$ where a, b are arbitrary constants.

77) Solve $\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$

78) Solve $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$ 79) Solve $ydx - xdy - 3x^2y^2e^{x^3}dx = 0$

80) The marginal cost function of manufacturing x gloves is $6 + 10x - 6x^2$. The total cost of producing a pair of gloves is Rs. 100. Find the total and average cost function.

81) Solve: $y(1 - x) - x \frac{dy}{dx} = 0$

82) Solve: cosx(1 + cos y)dx - sin y(1 + sin x)dy = 083) Solve: (1 - x)dy - (1 + y)dx = 0

Solve
$$\dfrac{dy}{dx} = xy + x + y + 1$$

85) Find the differential equation of all circles $x^2 + y^2 + 2gx = 0$ which pass through the origin and whose centres are on the X-axis.

86) Form the differential equation for $\frac{x^2}{a^2} + \frac{y^2}{b^2}$ =1 where a & b are arbitrary constants.

87) Form the differential equation for $y=(A+Bx)e^{3x}$ where A and B are constants.

88) Solve: $\sec 2x \, dy - \sin 5x \, \sec^2 y \, dx = 0$

89) Solve: $\cos^2 x \, dy + y \cdot e^{\tan x} \, dx = 0$

- 91) Find the differential equation of the family of straight lines y=mx + c when
 - (i) m is the arbitrary constant
 - (ii) c is the arbitrary constant
 - (iii) m and c both are arbitrary constants.
- 92) Solve $3e^{x}\tan y dx + (1 + e^{x})\sec^{2}y dy = 0$ given $y(0) = \frac{\pi}{4}$
- 93) Solve : x y $\frac{dx}{dy} = a\left(x^2 + \frac{dx}{dy}\right)$
- 94) The normal lines to a given curve at each point(x,y) on the curve pass through the point (1,0). The curve passes through the point (1,2). Formulate the differential equation representing the problem and hence find the equation of the curve.
- 95) The sum of Rs. 2,000 is compounded continuously, the nominal rate of interest being 5% per annum. In how many years will the amount be double the original principal? ($log_e 2 = 0.6931$)
- 96) Solve the differential equation $y^2dx + (xy + x^2)dy = 0$
- 97) Solve the differential equation $\frac{dy}{dx} = \frac{x-y}{x+y}$
- 98) Find the particular solution of the differential equation $x^2 dy + y(x + y)dx = 0$ given that x=1, y=1
- 99) If the marginal cost of producing x shoes is given by $(3xy + y^2)dx + (x^2 + xy)dy = 0$ and the total cost of producing a pair of shoes is given by Rs. 12. Then find the total cost function.
- 100) The marginal revenue 'y' of output 'q' is given by the equation
 - $rac{dy}{dq} = rac{q^2 + 3y^2}{2qy}$. Find the total Revenue function when output is 1 unit and

Revenue is Rs. 5.

101) Solve the following homogeneous differential equations.

$$x rac{dy}{dx} = x + y$$

102) Solve the following homogeneous differential equations.

$$(x-y)rac{dy}{dx}=x+3y$$

103) Solve the following homogeneous differential equations.

$$xrac{dy}{dx}-y=\sqrt{x^2+y^2}$$

104) Solve the following homogeneous differential equations.

$$\frac{dy}{dx} = \frac{3x - 2y}{2x - 3y}$$

105) Solve the following homogeneous differential equations.

$$(y^2 - 2xy)dx = (x^2 - 2xy)dy$$

- 106) The slope of the tangent to a curve at any point (x, y) on it is given by $(y^3-2yx^2)dx + (2xy^2-x^3)dy=0$ and the curve passes through (1, 2). Find the equation of the curve.
- 107) An electric manufacturing company makes small household switches. The company estimates the marginal revenue function for these switches to be $(x^2 + y^2)dy = xydx$ where x represents the number of units (in thousands). What is the total revenue function?
- 108) Solve $(x^2 + y^2)dx + 2xy dy = 0$
- 109) Solve $x^2ydx-(x^3+y^3)dy=0$
- 110) The net profit p and quantity x satisfy the differential equation
 - $\frac{dp}{dx}=\frac{2p^3-x^3}{3xp^2}$. Find the relationship between the net profit and demand given that p = 20, when x = 10.
- 111) The rate of increase in the cost Cof ordering holding as the size q of the order increases is given by the differential equation $\frac{dc}{dq} = \frac{c^2 + 2cq}{q^2}$. Find the relationship between c and q if c = 1 when q = 1.
- 112) The total cost of production y and the level of output x are related to the marginal cost of production by the equation $(6x^2+2y^2)dx-(x^2+4xy)dy=0$. What is the relation between total cost and output if y = 2 when x = 1?
