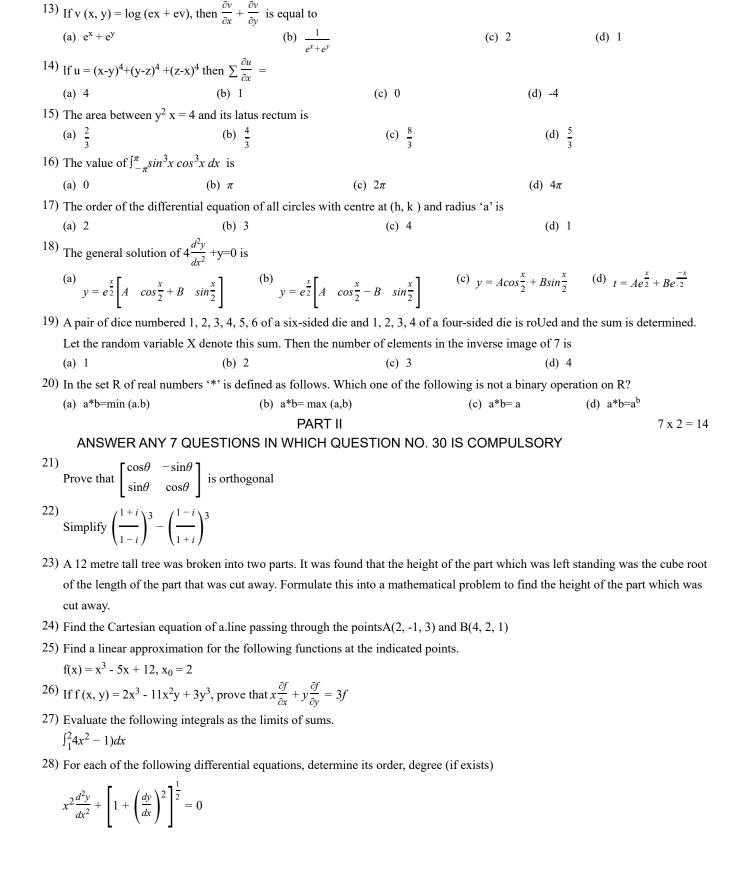
RAVI MATHS TUITION CENTER, CHENNAI – 82. PH - 8056206308

12TH MATHS MODEL PAPER 3


Date: 29-Nov-19

Reg.No.:

12th Standard Maths

(a) \vec{a}	(b) \vec{b}	(c) \vec{c}	(d) $\vec{0}$
The distance from the	ne origin to the plane \vec{r} . $\begin{pmatrix} \Lambda & \Lambda \\ 2i - j + \end{pmatrix}$	$\begin{pmatrix} \wedge \\ 5k \end{pmatrix} = 7 \text{ is } $	
(a) $\frac{7}{\sqrt{30}}$	(b) $\frac{\sqrt{30}}{7}$	(c) $\frac{30}{7}$	(d) $\frac{3}{3}$

i	nstructions : (1) check the question nform the hall supervisor immediate			- ·	
	draw diagrams.			- 11. 1 00	
Exa	am Time : 03:00:00 Hrs			Total Marks: 90	
	PART I		$20 \times 1 = 20$		
	ANSWER ALL				
1)	If $A \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$, then $A =$				
	(a) $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$		2 1 1	$\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$	
2)	The number of solutions of the system of equations $2x+y=4$, $x-2y=2$, $3x+5y=6$ is				
	(a) 0 (b) 1 (c) 2	(d) infinitely	many		
3)	If $z = \frac{\left(\sqrt{3} + i\right)^3 (3i + 4)^2}{(8 + 6i)^2}$, then z is equal to				
	(a) 0 (b) 1	(c) 2	(d) 3	
4)	If $z=\cos\frac{\pi}{4} + i\sin\frac{\pi}{6}$, then				
	If $z = \cos \frac{\pi}{4} + i \sin \frac{\pi}{6}$, then (a) $ z = 1$, $\arg(z) = \frac{\pi}{4}$ (b) $ z = 1$, $\arg(z) = \frac{\pi}{4}$	$ z = \frac{\pi}{6}$ (c) $ z = \frac{\sqrt{3}}{2}$, $\arg(z)$	$=\frac{5\pi}{24}$ (d) $ z = \frac{\sqrt{3}}{2}$,	$\arg(z) = \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$	
5)	According to the rational root theorem, which	h number is not possible ra	tional root of $4x^7 + 2x^4 - 10x$	x^3-5 ?	
	(a) -1 (b) $\frac{5}{4}$	(c) $\frac{4}{5}$		(d) 5	
6)	4	3			
0)	Let $a > 0$, $b > 0$, $c > 0$. h n both th root of th quatlon $ax^2 + b + C = 0$ are				
_\	(a) real and negative (b) real	al and positive	(c) rational numb rs	(d) none	
7)	If $\alpha = tan^{-1} \left(tan \frac{5\pi}{4} \right)$ and $\beta = tan^{-1} \left(-tan \frac{5\pi}{4} \right)$	$\left(\frac{2\pi}{3}\right)$ then			
	(a) $4\alpha = 3\beta$ (b) $3\alpha =$	$=4\beta$ (c)	$\alpha - \beta = \frac{7\pi}{12}$	(d) none	
8)	The centre of the circle inscribed in a square	formed by the lines x^2-8x-	$-12=0$ and $v^2-14v+45=0$	is	
	(a) (4,7) (b) (7,4)	(c) (9,4)	•) (4,9)	
9)	If a parabolic reflector is 20 em in diameter a		· ·		
-)	_	_	(d) (d)) 10)	
10)	(a) (0,5) (b) (5,0)	(c) (10,0)		<i>'</i>	
If \vec{a} , \vec{b} , \vec{c} are three unit vectors such that \vec{a} is perpendicular to \vec{b} and is parallel to \vec{c} then $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to					
	(a) \vec{a} (b) \vec{b}	(c) \overrightarrow{c}		$\overrightarrow{0}$	
11)	The distance from the origin to the plane \vec{r} .	$\begin{pmatrix} \wedge & \wedge & \wedge \\ 2i - j + 5k \end{pmatrix} = 7 \text{ is } \underline{\qquad}$			

12) A stone is thrown up vertically. The height it reaches at time t seconds is given by $x = 80t - 16t^2$. The stone reaches the

(c) 3

(d) 3.5

maximum height in time t seconds is given by

- 29) A six sided die is marked '2' on one face, '3' on two ofits faces, and '4' on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the values of the random variable and number of points in its inverse images.
- 30) Fill in the following table so that the binary operation * on $A = \{a,b,c\}$ is commutative.

PART III $7 \times 3 = 21$

ANSWER ANY 7 QUESTIONS IN WHICH QUESTION NO. 30 IS COMPULSORY

- 31) $\frac{z+3}{z-5i} = \frac{1+4i}{2}$, find the complex number z
- 32) Find the condition that the roots of $x^3+ax^2+bx+c=0$ are in the ratio p:q:r.
- For what value of x , the inequality $\frac{\pi}{-} < \cos^{-1}(3x 1) < \pi$
- 34) Find the equation of the circle with centre (2,3) and passing through the intersection of the lines 3x-2y-1=0 and 4x+y-27=0.
- Find the magnitude and the direction cosines of the torque about the point (2, 0, -1) of a force $(2i + \hat{j} \hat{k})$, whose line of action passes through the origin
- 36) If we blow air into a balloon of spherical shape at a rate of 1000³ cm per second. At what rate the radius of the baloon changes when the radius is 7cm? Also compute the rate at which the surface area changes.
- 37) Let $f(x,y) = \frac{3x 5y + 8}{x^2 + y^2 + 1}$ for all $(x, y) \in \mathbb{R}^2$ Show that f is continuous on \mathbb{R}^2
- 38) Evaluate: $\int_{\hat{\theta}}^{\frac{\pi}{2}} \frac{\cos\theta}{(1+\sin\theta)(2+\sin\theta)} d\theta$
- 39) Show that $x^2+y^2=r^2$, where r is a constant, is a solution of the differential equation $\frac{dy}{dx}=-\frac{x}{y}$.
- 40) On Z, define \bigotimes by $(m\bigotimes n)=mn+nm$: $\forall m, n\in \mathbb{Z}$. Is \bigotimes binary on \mathbb{Z} ?

PART IV $7 \times 5 = 35$

ANSWER ALL

Solve $cos \left(sin^{-1} \left(\frac{x}{\sqrt{1+x^2}} \right) \right) = sin \left\{ cot^{-1} \left(\frac{3}{4} \right) \right\}$

(OR)

- b) An engineer designs a satellite dish with a parabolic cross section. The dish is 5m wide at the opening, and the focus is placed 1 2 . m from the vertex
- (a) Position a coordinate system with the origin at the vertex and the x -axis on the parabola's axis of symmetry and find an equation of the parabola.
- (b) Find the depth of the satellite dish at the vertex.
- 42) a) If z=x+iy and $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$, then show that $x^2+y^2=1$.

(OR)

b) Define an operation* on Q as follows: $a*b = \left(\frac{a+b}{2}\right)$; $a,b \in Q$. Examine the closure, commutative, and associative properties satisfied by* on Q.

43) a) Using integration, find the area of the triangle with sides y = 2x+1, y = 3x + 1 and x = 4.

- b) Solve: $(1 + e^{2x}) dy + (1 + y^2)e^x dx = 0$ when y(0) = 1
- 44) a) Let $g(x, y) = 2y + x^2$, x = 2r -s, $y = r^2 + 2s$, $r, s \in R$. Find $\frac{\partial g}{\partial r}$, $\frac{\partial g}{\partial s}$
 - (OR
 - b) The probability density function of random variable X is given by $f(x) = \begin{cases} k & 1 \le x \le 5 \\ 0 & otherwise \end{cases}$ Find
 - (i) Distribution function
 - (ii) P(X < 3)
 - (iii) P(2 < X < 4)
 - (iv) $P(3 \le X)$
- 45) a) If $\vec{a} = \vec{i} \vec{j}$, $\vec{b} = \hat{i} \hat{j} 4\hat{k}$, $\vec{c} = 3\hat{j} \hat{k}$ and $\vec{d} = 2\hat{i} + 5\hat{j} + \hat{k}$
 - (i) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{b}, \vec{d}]\vec{c} [\vec{a}, \vec{b}, \vec{c}]\vec{d}$
 - (ii) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{c}, \vec{d}] \vec{b} [\vec{b}, \vec{c}, \vec{d}] \vec{a}$

(OR)

- b) A steel plant is capable of producing x tonnes per day of a low-grade steel and y tonnes per day of a high-grade steel,
- where $y = \frac{40 5x}{10 x}$ If the fixed market price of low-grade steel is half that of high-grade steel, then what should be optimal

productions in low-grade steel and high-grade steel in order to have maximum receipts.

46) a) If $A = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}$, show that $A^2 - 3A - 7I_2 = O_2$. Hence find A^{-1} .

(OR)

b) Solve the following systems of linear equations by Cramer's rule:

$$\frac{3}{x} - \frac{4}{y} - \frac{2}{z} - 0, \frac{1}{x} + \frac{2}{y} + \frac{1}{z} - 2 = 0, \frac{2}{x} - \frac{5}{y} - \frac{4}{z} + 1 = 0$$

47) a) Find the area of the region bounded between the parabola $x^2=y$ and the curve y=x.

(OR)

b) Solve: $\frac{dv}{dx} + 2y \cot x = 3x^2 \csc^2 x$
