RAVI MATHS TUITION CENTER, CHENNAI – 82. PH - 8056206308

12TH MATHS MODEL PAPER 2 Date: 29-Nov-19 12th Standard

			Maths	Reg.No.:					
Exa	am Time: 03:00:00 Hrs				Total Marks : 90				
		PAF	RT - I		$20 \times 1 = 20$				
		ANSW	ER ALL						
1)	If $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, $B = adj A$	and C = 3A, then $\frac{ adjB }{ C }$	<u>' </u> =						
	(a) $\frac{1}{3}$	(b) $\frac{1}{9}$	(c) $\frac{1}{4}$	(d) 1					
2)	Let A be a 3 x 3 matrix and	d B its adjoint matrix If	B =64, then A =						
	(a) ±2	(b) ±4	(c) ±8	(d) ±12					
3)	The area of the triangle for	med by the complex nu	umbers z,iz, and z+iz in the Arga	and's diagram is					
	(a) $\frac{1}{- z ^2}$	(b) $ z ^2$	(c) $\frac{3}{- z ^2}$	(d) $2 z ^2$					
4)	If, $i^2 = -1$, then $i^1 + i^2 + i^3 + +$ up to 1000 terms is equal to								
	(a) 1	(b) -1	(c) i	(d) 0					
5)	A polynomial equation in 2	x of degree n always has							
	(a) n distinct roots	(b) n real roots	(c) n imaginary roots	(d) at most one ro	ot				
6)	If $j(x) = 0$ has n roots, then $f'(x) = 0$ has roots								
	(a) n (b)		(c) n+1	(d) (n-r)					
7)	$sin^{-1}\frac{3}{5} - cos^{-1}\frac{12}{13} + sec^{-1}$	$1\frac{5}{3}$ - $cosec^{1}$ - $\frac{13}{2}$ is equal	to						
	(a) 2π	(b) π	(c) 0 (d)	$\tan^{-1}\frac{12}{65}$					
8)	The number of solutions o	f the equation $tan^{-1}2x$	$+ \tan^{-1} 3x = \frac{\pi}{4}$						
	(a) 2	(b) 3 (c) 1		(d) none					
9)		. ,	y=m at two distinct points if	(a) none					
-)	(a) $15 < m < 65$	(b) $35 < m < 85$	(c) $-85 < m < -35$	(d) $-35 < m < 15$					
10)	$y^2 - 2x - 2y + 5 = 0$ is a	(-)	(1) 00 111 00	()					
,	· ·	(b) parabola	(c) ellipse	(d) hyperbola					
11)	$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$, the			() 31					
	(a) $ \vec{a} \vec{b} \vec{c} $ (b) $\frac{1}{3} \vec{a} \vec{b} \vec{c} $			(c) 1 (d)	-1				
12)	The number of vectors of u	unit length perpendicula	ar to the vectors $\begin{pmatrix} \Lambda & \Lambda \\ i + j \end{pmatrix}$ and $\begin{pmatrix} J \\ J \end{pmatrix}$	$\begin{pmatrix} \lambda & \lambda \\ j + k \end{pmatrix}$ is					
	(a) 1	(b) 2	(c) 3	(d) ∞					
13)	The position of a particle reparticle is at rest is	noving along a horizont	tal line of any time t is given by	$(x \text{ set}) = 3t^2 - 2t - 8$. The time at v	which the				
	(a) $t=0$	(b) 1	(c) $t=1$	(d) $t = 3$					
		t	* *	• *					

14) If the rate of increase of $s = x^3 - 5x^2 + 5x + 8$ is twice the rate of increase of x, then one value of x is

17) If $f(x) = \int_0^x t \cos t dt$, then	$\frac{dx}{dx}$				
(a) cos x-x sin x	(b) $\sin x + x \cos x$		(c) x cos x	(d) x sin x	
18) The order and degree of the	ne differential equation $\sqrt{\sin}$	$\overline{x}(dx + dy) = \sqrt{\cos}$	x(dx-dy)		
(a) 1,2	(b) 2,2	(c) 1,1		(d) 2,1	
19) Consider a game where th	e player tosses a sixsided fair	die. H the face that	comes up is 6, th	e player wins Rs.36, ot	herwise he
loses Rs. k ² , where k is the	ne face that comes up $k = \{I, 2\}$,3,4, 5}.			
The expected amount to w	in at this game in Rs is				
(a) 19	(b) 19	(c) 3		(d) 3	
6	6	2		2	
20) Which one of the following	ng is a binary operation on N?				
(a) Subtraction	(b) Multiplication	(c) Divi	sion	(d) All the above	
	PART II				$7 \times 2 = 14$
	UESTIONS IN WHICH QU		IS COMPULS	SORY	
21) If A is symmetric, prove the	nat then adj Ais also symmetri	c.			
$\begin{array}{c} 22) & 3+4i \\ \text{Write} & \longrightarrow \text{ in the x+iv f} \end{array}$	form, hence find its real and in	naginary parts.			
5 – 12 <i>i</i>	,	augmur) purus.			
23) Formalate into a mathema	tical problem to find a numbe	r such that when its	cube root is adde	ed to it, the result is 6.	
24) Find all the values of x su	ch that				
$-10\pi \le x \le 10\pi$ and $\sin x$					
25) Examine the position of the			8y+12=0.		
26) $\hat{i} + 3k + 3i + 2i + \hat{k}$	$\hat{i} + mj + 4k$ are coplanar, find	the value of m			
27) Use differentials to find $\sqrt{}$	$\sqrt{25.2}$	the variation in			
28) Prove that $\int_{\hat{\theta}}^{\frac{\pi}{2}} log(tan x) dx$					
Trove that squog(tan x)ax					
29) Two balls are chosen rand	-				
	0 for each black ball selected.	X denotes the winn	ing amount, ther	n find the values of X ar	nd number
of points in its inverse ima	iges.				
Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	be any two boolean matr	rices of the same typ	e. Find AvB and	A^B.	
	PART III				$7 \times 3 = 21$
ANSWER ANY 7 C	QUESTIONS IN WHICH Q	UESTION NO. 40	IS COMPULSO	ORY	
31) Verify $(AB)^{-1} = B^{-1}A^{-1}$ wi	th $A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -3 \\ -1 \end{bmatrix}$.			
32) Find the values of the real	numbers x and y, if the comp	lex numbers (3-i)x-	-(2-i)y+2i +5 an	d 2x+(-1+2i)y+3+ 2i a	re equal.
33) If α , β and γ are the roots	of the cubic equation x^3+2x^2+	3x+4=0, form a cub:	ic equation whos	se roots are, 2α , 2β , 2γ	
34)					

(c) $\frac{3}{10}$

(c) x²u

(c) 1.3893

(d) $\frac{1}{3}$

 $(d) y^2u$

(d) none

(b) $\frac{10}{3}$

(b) 2xu

(b) 1.3898

15) If $u(x, y) = e^{x^2+y^2}$, then $\frac{\partial u}{\partial x}$ is equal to

(a) $e^{x^2+y^2}$

16) If $log_e 4 = 1.3868$, then $log_e 4.01 =$

(a) $\frac{3}{5}$

(a) 1.3968

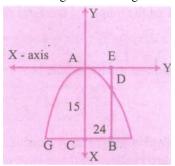
Find the domain of $\cos^{-1}(\frac{2+sinx}{3})$

- 35) Find the centre and radius of the circle $3x^2+(a+1)y^2+6x-9y+a+4=0$.
- 36) In triangle, ABC the points, D, E, F are the midpoints of the sides, BC, CA and AB respectively. Using vector method, show that the area of ΔDEF is equal to $\frac{1}{2}$ (area of ΔABC)
- A particle moves so that the distance moved is according to the law $s(t) = s(t) = \frac{t^3}{3} t^2 + 3$. At what time the velocity and acceleration are zero respectively?
- 38) Evaluate $: \int_{\theta}^{\frac{\pi}{2}} \frac{\sec x \tan x}{1 + \sec^2 x} dx$
- 39) Two balls are chosen randomly from an urn containing 6 white and 4 black balls. Suppose that we win Rs.30 for each black ball selected and we lose Rs.20 for each white ball selected. If X denotes the winning amount, then find the values of X and number of points in its inverse images.
- 40) Determine whether * is a binary operation on the sets given below. a*b=b=a.|b| on R

PART - IV
$$7 \times 5 = 35$$

(OR)

b) Establish the equivalence property connecting the bi-conditional with conditional: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$


ANSWER ALL

- 42) a) Let $f(x, y) = \sin(xy^2) + e^{x^3 + 5y}$ for all $\in \mathbb{R}^2$. Calculate $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$
 - b) A random variable X has the following probability mass function

X	1	2	3	4	5	6
f(x)	k	2k	6k	5k	6k	10k

Find

- (i) $P(2 \le X \le 6)$
- (ii) $P(2 \le X < 5)$
- (iii) P(X ≤4)
- (iv) P(3 < X)
- 43) a) The guides of a railway bridge is a parabola with its vertex at the highest point 15 m above the ends. If the span is 120 m, find the height of the bridge at 24 m from the middle point.

(OR)

- b) Solve $(1+x^2)\frac{dy}{dx} = 1+y^2$
- 44) a) Find the centre, foci, and eccentricity of the hyperbola $11x^2-25y^2-44x+50y-256=0$

b) Find the acute angle between the curves $y = x^2$ and $x = y^2$ at their points of intersection (0,0), (1,1).

45) a)
$$If 2\cos a = x + \frac{1}{x} \text{ and } 2\cos\beta = y + \frac{1}{y}, \text{ show that }$$

i)
$$\frac{x}{-} + \frac{y}{-} = 2\cos(\alpha - \beta)$$
.

ii)
$$xy - \frac{1}{xy} = 2i\sin(\alpha + \beta)$$

iii)
$$\frac{x^m}{v^n} - \frac{y^n}{x^m} = 2isin(m\alpha - n\beta)$$

iv)
$$x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\alpha + n\beta)$$

(OR)

b) Prove by vector method that $sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$

46) a)
$$\text{If } F(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}, \text{ show that } [F(\alpha)]^{-1} = F(-\alpha).$$

(OR)

b) Find a polynomial equation of minimum degree with rational coefficients, having $\sqrt{5} - \sqrt{3}$ as a root.

47) a) Using determinants; find the quadratic defined by $f(x) = ax^2 + bx + c$, if f(1) = 0, f(2) = -2 and f(3) = -6.

(OR)

b) Solve
$$\tan^{-1} \left(\frac{x-1}{x-2} \right) + \tan^{-1} \left(\frac{x+1}{x+2} \right) = \frac{\pi}{4}$$
