RAVI MATHS TUITION CENTER, GKM COLONY, CHENNAI- 82. PH: 8056206308

Ordinary Differential Equations FULL TEST

Maths

Reg.No.:

Total Marks: 90

 $20 \times 1 = 20$

12th Standard

Exam Time: 03:00:00 Hrs

ANSWER ALL

1)	ctively							
	(a) 2, 3 (b)	- C	(c) 2, 6	(d) 2, 4				
2)	The differential equation representir	ng the family of curves	$y = A\cos(x + B)$, where A ar	nd B are parameters, is				
	ux	(b) $\frac{d^2y}{dx^2} + y = 0$	$\text{(c)} \ \ \frac{d^2y}{dx^2} = 0$	$(d) \ \frac{d^2x}{dy^2} = 0$				
3)	The order and degree of the differen	tial equation \sqrt{sin} x	$\overline{(dx+dy)}=\sqrt{\cos x}(dx)$	-dy)				
	(a) 1,2 (b)		(c) 1,1	(d) 2,1				
	The order of the differential equatio	n of all circles with cen	tre at (h, k) and radius 'a' is					
	(a) 2 (b)	1	(c) 4	(d) 1				
5)	The general solution of the different	tial equation $\frac{dy}{dx} = \frac{y}{x}$ i						
	(a) $xy = k$ (b) $y = k$		(c) $y = kx$	(d) $\log y = kx$				
6) The solution of the differential equation $2x\frac{dy}{dx} - y = 3$ represents								
	(a) straight lines	(b) circles	(c) parabola	(d) ellipse				
7)	The integrating factor of the differen	,	$=\frac{1+y}{\lambda}$ is					
	(a) $\frac{x}{e^{\lambda}}$ (b)	$\frac{e^{\lambda}}{x}$	(c) λe^x	(d) e ^x				
8) The integrating factor of the differential equation $\frac{dy}{dx}$ +P(x)y=Q(x)is x, then P(x)								
	(a) x (b) $\frac{x^2}{2}$		(c) $\frac{1}{x}$	(d) $\frac{1}{x^2}$				
9)	The degree of the differential equati	on y $y(x)=1+rac{dy}{dx}+$	$\frac{1}{1.2} \left(\frac{dy}{dx}\right)^2 + \frac{1}{1.2.3} \left(\frac{dy}{dx}\right)^3 +$	is				
	(a) 2 (b)	3	(c) 1	(d) 4				
10) If p and q are the order and degree of the differential equation $y = \frac{dy}{dx} + x^3 \left(\frac{d^2y}{dx^2}\right) + xy = \cos x$, When								
	(a) $p < q$ (b) $p = q$	(c) $p > q$	(d) p exists and q does not e	xist				
11)	The solution of the differential equa	tion $\frac{dy}{dx} + \frac{1}{\sqrt{1-x^2}} = 0$						
	(a) $y + \sin^{-1} x = c$ (b) x	, T m	(c) $y^2 + 2 \sin^{-1} x = c$	(d) $x^2 + 2 \sin^{-1} y = c$				
12)	The solution of the differential equa	tion $\frac{dy}{dx} = 2xy$ is						
	(a) $y = Ce^{x^2}$ (b) $y = 2$		(c) $y = Ce^{-x^2} + C$	(d) $y = x^2 + C$				
13)	The solution of $\frac{dy}{dx} = 2^{y-x}$ is							
		$^{x}-2^{y}=C$	(c) $\frac{1}{2^x} - \frac{1}{2^y} = C$	(d) x+y=C				
14)	The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left(\frac{y}{x}\right)}{\phi'\left(\frac{y}{x}\right)}$ is							
		$\phi\left(\frac{y}{x}\right) = kx$		(d) $\phi\left(\frac{y}{x}\right) = ky$				
15)	If sin x is the integrating factor of the	e linear differential equ	nation $\frac{dy}{dx} + Pt = Q$, Then I	Pis				
	(a) log sin x	(b) cos x	(c) tan x	(d) cot x				
16)	16) The number of arbitrary constants in the general solutions of order n and n +1 are respectively							
	(a) n-1,n (b) n,n-		(c) n+1,n+2	(d) n+1,n				
17)	Integrating factor of the differential	equation $\frac{dy}{dx} = \frac{x+y+1}{x+1}$	is					
	(a) $\frac{1}{x+1}$ (b) $x+1$			(d) $\sqrt{x+1}$				
	The population P in any year t is suc	ch that the rate of increa	ase in the population is propo	ortional to the population. Then				

	(a) P=Ce ^{kt}	(b) P=Ce-kt	(c) P=Ckt	(d) P=C			
	proportional to the amount						
	remaining, then						
	(a) P=Cekt	(b) P=ce-kt	(c) P=Ckt	(d) Pt=C			

(a) $P=Ce^{kt}$ (b) $P=ce^{-kt}$ (c) P=Ckt (d) P=Ckt 20) The slope at any point of a curve y=f(x) is given by $\frac{dy}{dx}=3x^2$ and it passes through (-1,1). Then the equation of the curve is

 $7 \times 2 = 14$ **ANSWER ANY 7** 21) For each of the following differential equations, determine its order, degree (if exists)

 $\sqrt{\frac{dy}{dx}} - 4\frac{dy}{dx} - 7x = 0$

22) For each of the following differential equations, determine its order, degree (if exists) $rac{d^2y}{dx^2} = xy + cos\left(rac{dy}{dx}
ight)$

23) Express each of the following physical statements in the form of differential equation. The population P of a city increases at a rate proportional to the product of population and to the difference between 5,00,000 and the population.

24) Show that each of the following expressions is a solution of the corresponding given differential equation. $y = 2x^2$; xy' = 2y

25) Show that y = a cos bx is a solution of the differential equation $\frac{d^2y}{dx^2} + b^2y = 0$.

26) Solve the following differential equations:

$$sinrac{dy}{dx}=a,y(0)=1$$

27) Solve the following differential equations:

$$x \cos y dy = e^x(x \log x + 1)dx$$

28) $(x^2+y^2)dy = xy dx$. It is given that y(1) = 1 and $y(x_0) = e$. Find the value of x_0 .

29)
$$\frac{dy}{dx} = \frac{\sin^2 x}{1+x^3} - \frac{3x^2}{1+x^3}y$$

30) $x\frac{dy}{dx} + y = x\log x$

$$30) x \frac{dy}{dx} + y = x \log x$$

ANSWER ANY 7 $7 \times 3 = 21$

31) Determine the order and degree (if exists) of the following differential equations:

$$\left(rac{d^4y}{dx^4}
ight)^3 + 4{\left(rac{dy}{dx}
ight)}^7 + 6y = 5cos3x$$

32) Determine the order and degree (if exists) of the following differential equations:

$$3\left(rac{d^2y}{dx^2}
ight) = \left[4+\left(rac{dy}{dx}
ight)^2
ight]^{-rac{3}{2}}$$

33) Determine the order and degree (if exists) of the following differential equations:

$$dy + (xy - \cos x)dx = 0$$

34) Show that $x^2+y^2=r^2$, where r is a constant, is a solution of the differential equation $\frac{dy}{dx}=-\frac{x}{y}$.

35) Show that $y=mx+\frac{7}{m}$, $m\neq 0$ is a solution of the differential equation $xy'+7\frac{1}{n'}$ -y=0.

36) Solve $(x^2 - 3y^2) dx xydy = 0$.

37) Solve (2x + 3y)dx + (y - x)dy = 0.

38) Solve
$$(1+2e^{x/y})dx+2e^{x/y}\left(1-rac{x}{y}
ight)dy=0$$

39) A radioactive isotope has an initial mass 200mg, which two years later is 50mg. Find the expression for the amount of the isotope remaining at any time. What is its half-life? (half-life means the time taken for the radioactivity of a specified isotope to fall to half its original value).

In a murder investigation, a corpse was found by a detective at exactly 8 p.m. Being alert, the detective also measured the body temperature and found it to be 70°F. Two hours later, the detective measured the body temperature again and found it to be 60°F. If the room temperature is 50°F, and assuming that the body temperature of the person before death was 98.6°F, at what time did the murder occur?

$$[\log(2.43)=0.88789; \log(0.5)=-0.69315]$$

ANSWER ANY 7 $7 \times 5 = 35$

41) Solve
$$(1+x^2)\frac{dy}{dx} = 1 + y^2$$

42) Solve
$$y' = \sin^2(x - y + 1)$$
.

43) Solve
$$\frac{dy}{dx} = \frac{x - y + 5}{2(x - y) + 7}$$
.

- 44) Solve $[y(1-x \tan x)+x^2 \cos x]dx-dy=0$
- 45) Find the differential equation of the family of circles passing through the points (a,0) and (-a,0).

46) Solve :
$$\frac{dy}{dx} = \sqrt{4x + 2y - 1}$$

47) Solve:
$$\frac{dy}{dx} = (3x+y+4)^2$$
.

48) Solve
$$(1+x^3)\frac{dy}{dx} + 6x^2y = 1+x^2$$
.

49) Solve
$$ye^y dx = (y^3 + 2xe^y) dy$$

50) Solve:
$$(1 + e^{2x}) dy + (1 + y^2)e^x dx = 0$$
 when $y(0) = 1$
