RAVI MATHS TUITION CENTER ,GKM COLONY, CHENNAI- 82. PH: 8056206308 Discrete Mathematics FULL TEST

		12th Standard Maths	Reg.No.:	
	xam Time: 03:00:00 Hrs NSWER ALL THE QUESTIONS.			Total Marks : 90 20 x 1 = 20
1)	A binary operation on a set S is a function (a) $S \rightarrow S$ (b) $(SxS) \rightarrow S$		(d) $(SxS) \rightarrow 0$	(SxS)
2)	Subtraction is not a binary operation in (a) R (b) Z	(c) N	(d) Q	
3)	Which one of the following is a binary of (a) Subtraction (b) Multiplication	operation on N?		he above
4)	In the set R of real numbers '*' is define on R?	d as follows. Which one of	the following is no	t a binary operation
5)	(a) $a*b=min (a.b)$ (b) $a*b$ The operation * defined by $a*b = \frac{ab}{7}$ is	= max (a,b) not a binary operation on	(c) a*b= a	(d) a*b=a ^b
	(a) Q^+ (b) Z	(c) R	(d) C	
6)	In the set Q define $a \odot b = a+b+ab$. For w (a) $y=\frac{2}{3}$ (b) $y=\frac{-2}{3}$	what value of y, $3\bigcirc(y\bigcirc 5) =$ (c) $y = \frac{-3}{2}$) y=4
7)	If $a*b=\sqrt{a^2+b^2}$ on the real numbers (a) commutative but not (b) associative associative commutative	s then * is	`	her commutative
8)	Which one of the following statements has a sin x is an (b) Every square		plex number and (
9)	Which one of the following statements has a Chennai is in India (b) Chennai is in or $\sqrt{2}$ is an integer $\sqrt{2}$ is an irrational content.	nas truth value F? n India or (c) Chennai is	s in China (d) Cher	nnai is in China or
10	1) If a compound statement involves 3 sim (a) 9 (b) 8			
11) Which one is the inverse of the statement (a) $(p \land q) \rightarrow (p \lor q)$ (b) $(p \lor q) \rightarrow (p \land q)$	nt $(PVq) \rightarrow (p\Lambda q)$?		¹q)→(¬pV¬q)
12	Which one is the contrapositive of the s	tatement $(pVq) \rightarrow r$?		
			\rightarrow (p \land q) (d)	$p \longrightarrow (q \lor r)$
13	The truth table for $(p \land q) \lor \neg q$ is given	below		
	$ \begin{array}{c} p q (p \wedge q) \vee (\neg q) \\ T T(a) \\ T F(b) \end{array} $			
	FT(c) FF(d) Which are of the fellowing in true?			
	Which one of the following is true?			

(a) (a)(b)(c)(d)

$T \mid T \mid T \mid T \mid$	T F T T	TFFF	TFFF			
14) In the last column of the	truth table for $\neg (p \lor \neg q) t$	the number of final outcome	es of the truth value 'F' are			
(a) 1	(b) 2	(c) 3	(d) 4			
15) Which one of the following	ing is incorrect? For any tw	wo propositions p and q, we	have			
(a) $\neg (p \lor q) \equiv \neg p \land \neg q$	(b) ¬ (p∧ q)≡¬p ∨ ¬	$\neg q \qquad (c) \neg (p \lor q) \equiv \neg p \lor$	$/\neg q$ (d) $\neg (\neg p) \equiv p$			
16) $ \begin{array}{c} pq(p \land q) \longrightarrow \neg q \\ TT(a) \\ TF(b) \\ FT(c) \\ FF(d) \end{array} $						
	Which one of the following is correct for the truth value of $(p \land q) \rightarrow \neg p \ p$?					
(a)	(b)	(c)	(d)			
(a)(b)(c)(d)	(a)(b)(c)(d)	(a)(b)(c)(d)	(a)(b)(c)(d)			
$T \mid T \mid T \mid T$	F T T T	F F T T	$T \mid T \mid T \mid F \mid$			
17) The dual of $\neg (p V q) V [p V (p \land \neg r)]$ is						
(a) $(p \land q) \land [p \lor (p \land q)]$	(b) $(p \land q) \land [p \land (p \lor r)]$	(c) \neg (p \land q) \land [p \land (p \land r)]	$ \begin{array}{c} (d) \neg (p \land q) \land [p \land (pV \\ \neg r)] \end{array} $			
18) The proposition p ∧ (¬p	V q) is					
(a) a tautology (b) a contradiction (c) logically equivalent to p \(\Lambda \) q (d) logically equivalent to p \(\Lambda \) q						
19) Determine the truth value of each of the following statements:						
(a) 4+2=5 and 6+3=9						
(b) 3+2=5 and 6+1=7						
(c) $4+5=9$ and $1+2=4$						
(d) 3+2=5 and 4+7=11						
(a) (a)(b)(c)(d) F T T T	(b) (a)(b)(c)(d) T F T F	(c) (a)(b)(c)(d) T T F F	(d) (a)(b)(c)(d) F F T T			
20) Which one of the following is not true?						
, ,		(c) If the last column of its	(d) If p and q are any			
negation of a statement th		truth table contains only F	two statements then			
	•	then it is a contradiction	$p \leftrightarrow q$ is a tautology.			
tautology.						
Answer any 7 questions in which question no. 30 is compulsory $7 \times 2 = 14$						
21) Examine the binary operation (closure property) of the following operations on the respective sets (if it is						
not, make it binary) $ (a-1) \times (a-2) $						
$a*b=\left(rac{a-1}{b-1} ight), orall a,b\in Q$						
Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be any two boolean matrices of the same type. Find AvB and A^B.						
23) Write the converse, inverse, and contrapositive of each of the following implication.						

(i) If x and y are numbers such that x = y, then $x^2 = y^2$

(ii) If a quadrilateral is a square then it is a rectangle.

24) Verify whether the following compound propositions are tautologies or contradictions or contingency $((p V q) \land \sim p) \rightarrow q$

- 25) Verify whether the following compound propositions are tautologies or contradictions or contingency $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
- 26) Check whether the statement $p \rightarrow (q \rightarrow p)$ is a tautology or a contradiction without using the truth table.
- 27) Prove that $p \rightarrow (\neg q V r) \equiv \neg pV(\neg qVr)$ using truth table.
- 28) Show that p v ($q \wedge r$) is a contingency.
- 29) In the set of integers under the operation * defined by a * b = a + b 1. Find the identity element.
- 30) Let S be the set of positive rational numbers and is defined by a * b = $\frac{ab}{2}$. Then find the identity element and the inverse of 2.

Answer any 7 questions in which question no. 40 is compulsory

 $7 \times 3 = 21$

- 31) Determine whether * is a binary operation on the sets given below. a*b=b=a.|b| on R
- 32) Determine whether * is a binary operation on the sets given below. (A*v)=a√b is binary on R
- 33) Let *be defined on R by (a*b)=a+b+ab-7. is*binary on R? If so, find $3\left(\frac{-7}{15}\right)$.
- 34) Let $A = \{a + \sqrt{5} \ b: a, b \in Z\}$. Check whether the usual multiplication is a binary operation on A.
- 35) Consider the binary operation * defined on the set $A = \{a,b,c,d\}$ by the following table:

Is it commutative and associative?

36) Let
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ be any three

boolean matrices of the same type.

Find AAB

37) Let
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
 be any three

boolean matrices of the same type.

Find (AAB)VC

- 38) In (z, *) where * is defined by a * b = ab, prove that * is not a binary operation on z.
- 39) Let $G = \{1, i, -1, -i\}$ under the binary operation multiplication. Find the inverse of all the elements.
- 40) In (z, *) where * is defined as a * b = a + b + 2. Verify the commutative and associative axiom.

ANSWER 7 QUESTIONS.

 $7 \times 5 = 35$

- 41) How many rows are needed for following statement formulae? $((p \land q) \lor (\neg r \lor \neg s)) \land (\neg t \land v))$
- 42) Consider $p \rightarrow q$: If today is Monday, then 4 + 4 = 8. Here the component statements p and q are given by, p: Today is Monday; q: 4 + 4 = 8.

The truth value of $p\rightarrow q$ is T because the conclusion q is T.

An important point is that $p \rightarrow q$ should not be treated by actually considering the meanings of p and q in English. Also it is not necessary that p should be related to q at all.

Chapter

- 43) Construct the truth table for $(p \ \overline{\lor} \ q) \land (p \ \overline{\lor} \ \neg q)$
- 44) Define an operation* on Q as follows: $a*b = \left(\frac{a+b}{2}\right)$; $a,b \in Q$. Examine the closure, commutative, and associative properties satisfied by* on Q.
- 45) Define an operation* on Q as follows: $a*b=\left(\frac{a+b}{2}\right)$; $a,b \in Q$. Examine the existence of identity and the existence of inverse for the operation * on Q.
- 46) Let A be $Q\setminus\{1\}$. Define * on A by x*y = x + y xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A.
- 47) Verify
 - (i) closure property,
 - (ii) commutative property,
 - (iii) associative property,
 - (iv) existence of identity, and
 - (v) existence of inverse for following operation on the given set m*n=m+n-mn; $m,n \in \mathbb{Z}$
- 48) Verify
 - (i) closure property,
 - (ii) commutative property,
 - (iii) associative property,
 - (iv) existence of identity, and
 - (v) existence of inverse for the operation $+_5$ on Z_5 using table corresponding to addition modulo 5.
- Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in R \{0\} \right\}$ and let * be the matrix multiplication. Determine whether M is closed under *. If so, examine the existence of identity, existence of inverse properties for the operation * on M.
- 50) Let A be $Q\setminus\{1\}$. Define * on A by x*y = x + y xy. Is * binary on A? If so, examine the existence of identity, existence of inverse properties for the operation * on A.

LIKE, SUBSCRIBE AND SHARE

MY YOUTUBE CHANNEL NAME- SR MATHS TEST PAPERS