RAVI MATHS TUITION CENTER ,GKM COLONY, CHENNAI- 82. PH: 8056206308 Probability Distributions FULL TEST

	12th Standard Maths	Reg.No.:
Exam Time: 03:00:00 Hrs		Total Marks : 90
Answer ALL		$20 \times 1 = 20$
1) Let X be random variable with probabili	ty density function	
$f(x) = \begin{cases} \frac{2}{x^3} & 0 < x \ge l \\ 0 & 1 \le x < 2l \end{cases}$ Which of the following statement is corn (a) both mean and (b) mean exists by variance exist variance does not 2) A rod of length 2l is broken into two piet the two pieces is	out (c) both mean an variance do not ex	xist Mean does uot exist
$f(x) = \begin{cases} \frac{2}{x^3} & 0 < x > l \\ 0 & 1 \le x < 2l \end{cases}$		
(a) $l l^2$ (b) $l l^2$	(c) l^2 1, $\frac{1}{l^2}$	(d) $_{1}$ $_{l}^{2}$
(a) $l l^2$ (b) $l l^2$ $-, 2 3$ $2 6$	1, —	- , -
3) Consider a game where the player tosses Rs.36, otherwise he loses Rs. k ² , where The expected amount to win at this game	k is the face that comes up ke in Rs is	$x = \{I, 2, 3, 4, 5\}.$
(a) ₁₉ (b) ₁₉	(c) ₃	(d) 3 - - 2
<u> </u>	-	- -
4) A pair of dice numbered 1, 2, 3, 4, 5, 6 c sum is determined. Let the random variation inverse image of 7 is	of a six-sided die and 1, 2, 3, able X denote this sum. Then	4 of a four-sided die is roUed and the the number of elements in the
(a) 1 (b) 2	(c) 3 have a solution with $x = 25$ and $x = 0$	(d) 4
5) A random variable X has binomial distri (a) 6 (b) 4	button with $n = 25$ and $p = 0$ (c) 3	(d) 2
6) Let X represent the difference between t is tossed n times. Then the possible value (a) i + 2n i = 0.1.2 m (b) 2i-n i =	the number of heads and the les of X are	number of tails obtained when a coin

variable X, then which of the followingcannot be the value of a and b?

(a) 0 and 12

7)

(b) 5 and 17

(c) 7 and 19

If the function $f(x) = \frac{1}{12}$ for a < x < b, represents a probability density function of a continuous random

(d) 16 and 24

respectively, 42, 36, number of students t	34, and 48 students. One hat were on the bus carry	of the students is randomly ring the randomly selected	all stadium. The buses carry, y selected. Let X denote the student One of the 4 bus drivers is s. Then E[X] and E[Y] respectively
(a) 50,40	(b) 40,50	(c) 40.75,40	(d) 41,41
	flipped. The first coin wil	Il land on heads with proba	ability 0.6, the second with
		-	let X equal the total number of
heads that result The		1 1 ,	1
(a) 0.11	(b) 1.1	(c) 1.1	(d) 1
` '	\ /	` '	5 questions, the probability that a
•	more correct answers jus		e questions, the producting that u
(a) 11	(b) 3	(c) 1	(d) 5
(u) II —	(0) 3	(e) 1 —	(d) 5
243	8	243	243
11) $ICD(V = 0) = 1 D(0)$	V = 1) IfE(V) = 2V _{ex} (V)	th or D(V = 0)	
	$X = I$ }. If $E[X] = 3Var(X)$		(4)
(a) ₂	(b) ₂	(c) ₁	(d) ₁
3	- 5	5	3
	1 11 11		
	<u>-</u>	cted value 6 and variance	
	$\begin{pmatrix} 10 \\ \frac{10}{5} \end{pmatrix} \begin{pmatrix} 3 \\ \frac{1}{5} \end{pmatrix}$	$ \frac{5}{\left(\frac{10}{5}\right)\left(\frac{3}{5}\right)^4 \left(\frac{2}{5}\right)^4} $	
13)		(ax	x + b 0 < x < 1
The random variable	e X has the probability de	ensity function $f(x) = \begin{cases} 0 \end{cases}$	$c+b 0 < x < 1$ $otherwise \qquad \text{and } E(X) = \frac{7}{12}$
then a and b are resp	nectively		
(a) 1	(b) ₁	(c) 2 and 1	(d) 1 and 2
1 and -		(-) =	(-)
2	2		
14) Suppose that X take	es on one of the values 0,	1, and 2. If for some const	ant k, $P(X = I) = k P(X = i-I) i = 1$,
1			
2 and $P(X = 0) = -th$	nen the value of k is		
(a) 1	(b) 2	(c) 3	(d) 4
· /	ring is a discrete random	` '	(u) 4
	s crossing a particular sig	•	
	• •	train tickets at a moment.	
	complete a telephone ca		(1) II 1 III
(a) I and II	(b) II only	(c) III only	(d) II and III
		random variable, then the	
(a) 1	(b) 2	(c) 3	(d) 4
1/) The probability mas	ss function of a random va	ariable is defined as:	

18) Let X have a Bernoulli distribution with mean 0.4, then the variance of (2X - 3) is

(a) 0.24

(b) 0.48

(c) 0.6

(d) 0.96

19) If in 6 trials, X is a binomial variate which follows the relation 9P(X = 4) = P(X = 2), then the probability of success is

(a) 0.125

(b) 0.25

(c) 0.375

(d) 0.75

20) A computer salesperson knows from his past experience that he seUs computers to one in every twenty customers who enter the showroom. What is the probability that he will seU a computer to exactly two of the next three customers?

(a) $\frac{57}{20^3}$

(b) $\frac{57}{20^2}$

(c) 19^3

(d) 57

Answer any 7 questions in which question no. 30 is compulsory

 $7 \times 2 = 14$

21) An urn contains 5 mangoes and 4 apples Three fruits are taken at randaom If the number of apples taken is a random variable, then find the values of the random variable and number of points in its inverse images.

22) A six sided die is marked '2' on one face, '3' on two ofits faces, and '4' on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the values of the random variable and number of points in its inverse images.

23) The cumulative distribution function of a discrete random variable is given by

$$F(x) = \begin{cases} 0 & -\infty < x < -10 \\ 0.15 & -1 \le x < 0 \\ 0.35 & 0 \le x < 1 \\ 0.60 & 1 \le x < 2 \\ 0.85 & 2 \le x < 3 \\ 1 & 3 \le x < \infty \end{cases}$$

Find

(i) the probability mass function

(ii) $P(X \le 1)$ and

(iii) P(X ~ 2

24) If X is the random variable with probability density function j(x) given by,

$$f(x) = \begin{cases} x+1 & -1 \le x < 0 \\ -x+1 & 0 \le x < 1 \\ 0 & otherwise \end{cases}$$

then find

(i) the distribution function F(x)

(ii) P($-0.5 \le X \le 0.5$)

For the random variable X with the given probability mass function as below, find the mean and variance.

$$f(x) = \begin{cases} \frac{1}{-e} - \frac{x}{2} & \text{for } x > 0\\ 2 & \text{otherwise} \end{cases}$$

- 26) If μ and σ^2 are the mean and variance of the discrete random variable X, and E(X+3)=10 and $E(X+3)^2=116$, find μ and a^2 .
- 27) If X-B(n, p) such that 4P(X = 4) = P(X = 2) and $n = 6 \cdot Find$ the distribution, mean and standard deviation of X.
- 28) For the random variable X with the given probability mass function as below, find the mean and variance

$$f(x) = \begin{cases} 2(x-1) & 1 < x < 2 \\ 0 & otherwise \end{cases}$$

- 29) Four fair coins are tossed once. Find the probability mass function, mean and variance for number of heads occurred.
- 30) Compute P(X = k) for the binomial distribution, B(n,p) where

$$n=9, p = \frac{1}{2}, k=7$$

Answer any 7 questions in which question no. 40 is compulsory

$$7 \times 3 = 21$$

- 31) An urn contains 2 white balls and 3 red balls. A sample of 3 balls are chosen at random from the urn. If X denotes the number of red balls chosen, find the values taken by the random variable X and its number of inverse images
- 32) Two balls are chosen randomly from an urn containing 6 white and 4 black balls. Suppose that we win Rs.30 for each black ball selected and we lose Rs.20 for each white ball selected. If X denotes the winning amount, then find the values of X and number of points in its inverse images.
- Find the constant C such that the function $f(x) = \begin{cases} Cx^2 & 1 < x < 4 \\ 0 & Otherwise \end{cases}$ is a density function, and compute
 - (i) P(1.5 < X < 3.5)
 - (ii) $P(X \le 2)$
 - (iii) $P(3 \le X)$.
- 34) If X is the random variable with probability density function f(x) given by,

$$f(x) = \begin{cases} x - 1 & 1 \le x < 2 \\ -x + 3 & 2 \le x < 3 \\ 0 & Otherwise \end{cases}$$

find (i) the distribution function F(x)

(ii)
$$P(1.5 \le X \le 2.5)$$

35) If X is the random variable with distribution function F(x) given by,

$$F(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x < 1 \\ 1 & 1 \le x \end{cases}$$

then find (i) the probability density function f(x) (ii) $P(0.2 \le X \le 0.7)$

36) Suppose that f (x) given below represents a probability mass function

X	1	2	3	4	5	6
f(x)	c^2	$2c^2$	$3c^2$	$4c^2$	С	2c

Find

- (i) the value of c
- (ii) Mean and variance.
- 37) The mean and variance of a binomial variate X are respectively 2 and 1.5. Find
 - (i) P(X = 0)
 - (ii) P(X = 1)
 - (iii) $P(X \ge 1)$
- 38) A multiple choice examination has ten questions, each question has four distractors with exactly one correct answer. Suppose a student answers by guessing and if X denotes the number of correct answers, find (i) binomial distribution (ii) probability that the student will get seven correct answers (iii) the probability of getting at least one correct answer
- 39) On the average, 20% of the products manufactured by ABC Company are found to be defective. If we select 6 of these products at random and X denote the number of defective products find the probability that (i) two products are defective (ii) at most one product is defective (iii) at least two products are defective.
- 40) Suppose two coins are tossed once. If X denotes the number of tails,
 - (i) write down the sample space
 - (ii) find the inverse image of 1
 - (iii) the values of the random variable and number of elements in its inverse images

A mapping X(.) from S to \mathbf{R}

ANSWER ANY 7 $7 \times 5 = 35$

- 41) A six sided die is marked '1' on one face, '2' on two of its faces, and '3' on remaining three faces. The die is rolled twice. If X denotes the total score in two throws.
 - (i) Find the probability mass function.
 - (ii) Find the cumulative distribution function.

(iii) Find $P(3 \le X \le 6)$ (iv) Find $P(X \ge 4)$.

	9.	2	
1	2	3	3
83 8	3		9

42) A random variable X has the following probability mass function

X	1	2	3	4	5	6
f(x)	k	2k	6k	5k	6k	10k

Find

- (i) $P(2 \le X \le 6)$
- (ii) $P(2 \le X \le 5)$
- (iii) $P(X \le 4)$
- (iv) $P(3 \le X)$

43)

The probability density function of random variable X is given by $f(x) = \begin{cases} k & 1 \le x \le 5 \\ 0 & otherwise \end{cases}$ Find

- (i) Distribution function
- (ii) P(X < 3)
- (iii) P(2 < X < 4)
- (iv) $P(3 \le X)$
- 44) Two balls are chosen randomly from an urn containing 8 white and 4 black balls. Suppose that we win Rs 20 for each black ball selected and we lose Rs10 for each white ball selected. Find the expected winning amount and variance
- 45) Find the probability mass function f(x) of the discrete random variable X whose cumulative distribution function F(x) is given by

$$F(x) = \begin{cases} 0 & -\infty < x < -2 \\ 0.25 & -2 \le x < -1 \\ 0.60 & -1 \le x < 0 \\ 0.90 & 0 \le x < 1 \\ 1 & 1 \le x < \infty \end{cases}$$

Also find (i) $P(X \le 0)$ and (ii) $P(X \ge -1)$

46) Find the mean and variance of a random variable X , whose probability density function is

$$f(x) = \begin{cases} \lambda e^{-2x} & for \ge 0\\ 0 & otherwise \end{cases}$$

- 47) Two fair coins are tossed simultaneously (equivalent to a fair coin is tossed twice). Find the probability mass function for number of heads occurred.
- 48) A pair of fair dice is rolled once. Find the probability mass function to get the number of fours.
- 49) If the probability mass function f(x) of a random variable X isx

_+	3	1	X
5 1	5	1	
_ _	12	12	f(x)
	1	12	I (X)

find (i) its cumulative distribution function, hence find

- (ii) $P(X \le 3)$ and,
- (iii) $P(X \ge 2)$
