RAVI MATHS TUITION CENTER ,GKM COLONY, CHENNAI- 82. PH: 8056206308

Applications of Integration full test 12th Standard

Maths

Reg.No.:

Exam Time: 03:00:00 Hrs Total Marks: 90 ANSWER ALL $20 \times 1 = 20$ 1) The value of $\int_{-4}^4 \left[tan^{-1} \left(rac{x^2}{x^4+1}
ight) + tan^{-1} \left(rac{x^4+1}{x^2}
ight) \right] dx$ is (d) 4π 2) The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{2x^7 - 3x^5 + 7x^3 - x + 1}{\cos^2 x} \right) dx$ (c) 2 (d) 03) If $f(x) = \int_0^x t \cos t \, dt$, then $\frac{dx}{dx}$ (a) cos x-x sin x (b) $\sin x + x \cos x$ (c) x cos x (d) x sin x 4) The area between $y^2 x = 4$ and its latus rectum is (c) $\frac{8}{3}$ (d) $\frac{5}{3}$ 5) The value of $\int_0^1 x (1-x)^{99} dx$ is (a) $\frac{1}{11000}$ (b) $\frac{1}{10100}$ (c) $\frac{1}{10010}$ (d) $\frac{1}{10001}$ 6) The value of $\int_0^{\pi} \frac{dx}{1+5^{\cos x}}$ is (c) $\frac{3\pi}{2}$ (d) 2π 7) The value of $\frac{(n+2)}{(n)} = 90$ then n is (a) 10 (c) 8 (d) 9 8) The value of $\int_0^{\frac{\pi}{6}} cos^3 3x dx$ (b) $\frac{2}{9}$ (c) $\frac{1}{9}$ (d) $\frac{1}{3}$ 9) The value of $\int_0^{\pi} sin^4 x dx$ is (a) $\frac{3\pi}{10}$ (b) $\frac{3\pi}{8}$ (c) $\frac{3\pi}{4}$ (d) $\frac{3\pi}{2}$ 10) The value of $\int_0^\infty e^{-3x} x^2 dx$ is (a) $\frac{7}{27}$ (b) $\frac{5}{27}$ 11) If $\int_a^a \frac{1}{4+x^2} dx = \frac{\pi}{8}$ then a is (c) $\frac{4}{27}$ (d) $\frac{2}{27}$ (c) 3 12) The volume of solid of revolution of the region bounded by $y^2 = x(a - x)$ about x-axis is (a) πa^2 (b) $\frac{\pi a^2}{4}$ (c) $\frac{\pi a^2}{5}$ (d) $\frac{\pi a^2}{6}$ $f(x) = \int_{1}^{x} rac{e^{\sin^{u}}}{u} du, x > 1 \quad and \quad \int_{1}^{3} rac{e^{\sin^{2}}}{x} dx = rac{1}{2} [f(a) - f(1)]$, then one of the possible value of a is (c) 9 (d) 5 14) The value of $\int_0^1 \left(sin^{-1}x\right)^2 dx$ (a) $\frac{\pi^2}{4}-1$ (b) $\frac{\pi^2}{4}+2$ (c) $\frac{\pi^2}{4} + 1$ (d) $\frac{\pi^2}{4} - 2$ 15) The value of $\int_0^a (\sqrt{a^2 - x^2})^2 dx$ (a) $\frac{\pi a^2}{16}$ (b) $\frac{3\pi a^4}{16}$ (d) $\frac{3\pi a^4}{9}$ 16) If $\int_0^x f(t)dt = x + \int_x^1 t f(t)dt$ then the value of f(1) is

(a)	(b) 2	(c) 1	(d)	
17) The $\frac{1}{2}$ value of $\int_0^{\frac{2}{3}} \frac{c}{\sqrt{4}}$	$\frac{dx}{-9x^2}$ is		$\frac{3}{4}$	
(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{4}$	(d) π	
18) The value of $\int_{-1}^{2} x dx$	dx		_	
4	(b) $\frac{3}{2}$	(c) $\frac{5}{2}$	(d) $\frac{7}{2}$	
19) For any value of n∈Z				
(a) $\frac{\pi}{2}$	(b) π	(c) 0	(d) 2	
20) The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} sin^{\frac{\pi}{2}}$	$n^2xcosxdx$ is			
(a) $\frac{3}{2}$	a s 1	(c) 0	(d) $\frac{2}{3}$	
ANSWER ANY 7	2		Ü	$7 \times 2 = 14$
21) Find an approximate value of $\int_1^{1.5} x^2 dx$ by applying the right-end rule with the				
partition {1.1,1.2,1.3,	,1.4,1.5}.			
22) Evaluate the followin $\int_{1}^{2} 4x^{2} - 1) dx$	ng integrals as the li	mits of sums.		
23) Evaluate the following	ng definite integrals	:		
$\int_0^{rac{\pi}{2}} e^x \left(rac{1+sinx}{1+cosx} ight) dx$				
24) Evaluate the followin $\int_0^{2\pi} x \log \left(\frac{3 + \cos x}{3 - \cos x} \right)$		roperties of integration:		
(/	•			
25) Evaluate the followin $\int_0^1 5x - 3 dx$	ng integrals using pi	roperties of integration:		
$\int_0^{\pi/2} \partial x ^{-3} dx$ 26) Evaluate the following	na integrals usina n	onerties of integration:		
$\int_{rac{\pi}{8}}^{rac{3\pi}{8}} rac{1}{1+\sqrt{tanx}} dx$	ng megrais using pr	operates of integration.		
27) Evaluate the following	ng:			
$\int_0^{rac{1}{2}} rac{e^a - sin^{-1x}sin^{-1}x}{\sqrt{1-x^2}} dx$	r			
28) Evaluate the following $a\pi/4$	ng			
$\int_0^{\pi/4} sin^6 x dx$				
29) Find the area of the region bounded by $3x - 2y + 6 = 0$, $x = -3$, $x = 1$ and x-axis.				
30) Find the area of the region bounded by the line $y = 2x + 5$ and the parabola $y = x^2 - 2x$.				
ANSWER ANY 7 31) Evaluate : $\int_0^{\frac{\pi}{3}} \frac{\sec x ta}{1 + \sec^2 x}$	vn. x 1			$7 \times 3 = 21$
17360	- d			
32) Evaluate: $\int_0^{\frac{\pi}{2}} \frac{c}{(1+\sin\theta)^{\frac{\pi}{2}}}$	$rac{\cos heta}{ heta)(2+sin heta)}d heta$			
33) Show that $\int_0^{\frac{\pi}{2}} \frac{dx}{4+5sinx} = \frac{1}{3} \log_e 2$				
34) Prove that $\int_0^{\frac{\pi}{4}} \frac{\sin 2x dx}{\sin^4 x + \cos^4 x} = \frac{\pi}{4}$				
35) Evaluate $\int_0^{\pi} \frac{x}{1+\sin x} dx$				
36) Prove that $\int_0^{\frac{\pi}{4}} \log($	$1+\tan x)dx = \frac{\pi}{8} \log 2$	2.		

- 37) Evaluate Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{\int_{0}^{\frac{\pi}{2}} \frac{dx}{\int_{0}^{\frac{\pi}$
- 39) Find the volume of the solid formed by revolving the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{k^2}$ 1, a > b

about the major axis.

40) Find, by integration, the volume of the solid generated by revolving about y-axis the region bounded between the curve $y=\frac{3}{4}\sqrt{x^2-16}, x\geq 4$ the y-axis, and the lines y = 1 and y = 6.

ANSWER ANY 7 $7 \times 5 = 35$

- 41) Evaluate $\int_{1}^{4} (2x^2 3)$ dx, as the limit of a sum
- 42) Evaluate $\int_0^1 e^{-2x} (1+x-2x^3) dx$
- 43) Evaluate $\int_0^{\frac{\pi}{2}}$ ($\sin^2 x + \cos^4 x$) dx 44) Evaluate $\int_0^{2a} x^2 \sqrt{2ax x^2} dx$
- 45) Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 46) Find the area of the region bounded by x-axis, the curve $y = \cos x$, the lines x = 0 and $x = \pi$.
- 47) Find the area of the region bounded between the parabolas $y^2 x = 4$ and $x^2 y = 4$.
- 48) Find the area of the region in the first quadrant bounded by the parabola y^2 x=4, the line x+y=3 and y-axis
- 49) Find, by integration, the area of the region bounded by the lines 5x 2y = 15, x + y + 4 = 0 and the x-axis
- 50) Using integration find the area of the region bounded by triangle ABC, whose vertices A, B, and C are (-1,1), (3, 2), and (0,5) respectively
