Ravi home tutions PH - 8056206308

Differentials and Partial Derivatives FULL TEST

12th Standard

		Maths	Reg.No.:			
Exam Time: 03:00:00	Hrs			Total Marks: 90		
ANSWER ALL				$20 \times 1 = 20$		
1) A circular template	has a radius of 10 cm. The	measurement of radius	s has an approxim	ate error of 0.02		
•	ntage error in calculating are	-				
(a) 0.2%	(b) 0.4%	(c) 0.04%	(d) 0.08	%		
	or of fifth root of 31 is appro			ge error in 31?		
(a) $\frac{1}{31}$	(b) $\frac{1}{5}$	(c) 5	(d) 31			
3) If $u(x, y) = e^{x^{2+y^2}}$,	then $\frac{\partial u}{\partial x}$ is equal to					
(a) $e^{x^{2+y^2}}$	(b) 2xu	(c) x^2u	(d)	y ² u		
4) If $v(x, y) = \log(ex)$	+ ev), then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is equ	al to				
(a) $e^x + e^y$	(b) $\frac{1}{e^x + e^y}$		(c) 2	(d) 1		
5) If $w(x, y) = xy, x >$	0, then $\frac{\partial w}{\partial x}$ is equal to					
(a) $x^y \log x$	(b) y log x	(c) yx^{y-1}	(d) x lo	og y		
6) If $f(x, y) = e^{xy}$ then	$\frac{\partial^2 f}{\partial x \partial y}$ is equal to					
(a) xye ^{xy}	(b) $(1 + xy)e^{xy}$	(c) $(1 + y)e^{xy}$	(d) $(1 + x)e^{xy}$			
7) If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the						
volume is						
(a) 0.4 cu.cm	(b) 0.45 cu.cm	(c) 2 cu.cm	` '			
	urface area $S = 6x^2$ of a cub					
(a) $12 x_0 + dx$	(b) $12x_0 dx$	()	(d) $6x_0$			
9) The approximate ch	ange in the volume V of a c	cube of side x metres c	aused by increasi	ng the side by 1%		
	(b) 0.03 cm^3	(c) $0.03 \times 2 \text{ m}^3$	(d) 0.	$03x^3m^3$		
* *	` '	* *				
10) If $g(x, y) = 3x^2 - 5y + 2y$, $x(t) = e^t$ and $y(t) = \cos t$, then $\frac{dg}{dt}$ is equal to (a) $6e^{2t} + 5\sin t - 4\cos t$ (b) $6e^{2t} - 5\sin t + 4\cos t$ (c) $3e^{2t} + 5\sin t + 4\cos t$ (d) $3e^{2t} - 5\sin t + 4\cos t$						
sin t	sin t	sin t	sin t	3 3 m t · 1 c 0 5 t		
11) If $f(x) = \frac{x}{11}$ then	its differential is given by					
	(b) $\frac{1}{(x+1)^2}dx$	(c) $\frac{1}{1+x}dx$	(d)	$rac{-1}{1+x}dx$		
12) If $u(x, y) = x^2 + 3xy$	$y + y - 2019$, then $\frac{\partial u}{\partial x}$ (4, -5) i	s equal to				
(a) -4	(b) -3	(c) -7	(d) 13			
13) Linear approximati	on for $g(x) = \cos x$ at $x = \frac{-\pi}{2}$	is				
(a) $x + \frac{-\pi}{2}$	(b) $-x + \frac{\pi}{2}$	(c) $x - \frac{\pi}{2}$	(d) - x -	$+\frac{\pi}{2}$		
14) If w $(x, y, z) = x^2$ (v	$(y - z) + y^2 (z - x) + z^2 (x - y)$, then $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$	is	2		
(a) $xy + yz + zx$	(b) $x(y -$	•	y(z + x)	(d) 0		
15) If $(x,y,z) = xy + yz$	$+zx$, then f_x - f_z is equal to					
(a) z - x	(b) y - z	(c) $x - z$	(d) y -	X		
$16) \text{ If } \mathbf{u} = \log \sqrt{x^2 + y}$	$\overline{y^2}$, then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ is					

(a)		(b) 0	(c) u	(d) 2u
17) If $u \sqrt{\log (x^2)^2 + y^3}$	$+z^3$ - 3xyz) then $\frac{\partial u}{\partial x}$ +	$\frac{\partial u}{\partial u} + \frac{\partial u}{\partial z} =$		
(a) $\frac{3}{x+y+z}$	(b) $x+y+z$	(c) $\frac{-9}{(x+y+z)^2}$		(d) $\frac{-9}{(x+y+z)^2}$
18) If $u = y^x$ then $\frac{\partial u}{\partial y}$	=	(0 ,		,
	(b) yx^{y-1}		(c) 0	(d) 1
19) If $u = \left(\frac{y}{x}\right)$ then x	$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \dots$			
(a) 0	(b) 1	(c) 2u		(d) u
(a) 0 20) If $u = y \sin x$ then	$\frac{\partial^2 u}{\partial x \partial y} = \dots$			
	(b) cos y	(c)	sin x	(d) 0

 $7 \times 2 = 14$ ANSWER ANY 7

- 21) Use the linear approximation to find approximate values of $\sqrt[3]{26}$
- 22) A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9-8 cm. Find approximations for the following: change in the volume
- 23) The time T, taken for a complete oscillation of a single pendulum with length l, is given by the equation T $=2\pi\sqrt{\frac{1}{g}}$, where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of 1
- 24) Find df for $f(x) = x^2 + x$ 3 and evaluate it for x = 3 and dx = 0.02
- 25) An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and radius to the outside of the shell is 5.3 mm, find the volume of the shell approximately.
- 26) Assume that the cross section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much is cross-sectional area increased approximately?
- Evaluate $\dfrac{lim}{(x,y) o (1,2)}$, if the limit exists, where $(x,y)=rac{3x^2-xy}{x^2+y^2+3}$
- 28) Let $g(x, y) = \frac{e^y sinx}{x}$, for $x \neq 0$ and g(0, 0) = 1. Show that g is continuous at (0,0).
- 29) Find the partial derivatives of the following functions at the indicated point h (x, y, z) = x sin (xy) + z^2 x, $(2, \frac{\pi}{4}, 1)$

30) If $U(x, y, z) = \log(x^3 + y^3 + z^3)$, find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial u} + \frac{\partial U}{\partial z}$

ANSWER ANY 7 $7 \times 3 = 21$

- 31) Use linear approximation to find an approximate value of $\sqrt{9.2}$ without using a calculator.
- 32) Let us assume that the shape of a soap bubble is a sphere. Use linear approximation to approximate the increase in the surface area of a soap bubble as its radius increases from 5 cm to 5.2 cm. Also, calculate the percentage error.
- 33) Consider $g(x,y) = \frac{2x^2y}{x^2+y^2}$, if $(x,y) \neq (0,0)$ and g(0,0) = 0 Show that g is continuous on \mathbb{R}^2
- 34) If $w(x, y, z) = x^2 y + y^2 z + z^2 x$, $x, y, z \in \mathbb{R}$, 67 find the differential dw.
- 35) Let $U(x, y, z) = x^2 xy + 3 \sin z$, $x, y, z \in R$ Find the linear approximation for U at (2,-1,0).

 $f(x,y) = \frac{xy}{x^2 + y^2}$, $(x,y) \neq (0,0)$ and f(0,0) = 0 Show that f is not continuous at f, -(0,0) and continuous at all other points of R^2

- 37) If $u=\sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, Show that x $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=\frac{1}{2}tanu$
- 38) Use differentials to find the value of $\sqrt{0.037}$
- 39) Find the approximate value of f (3.02) where $f(x) = 3x^2 + 5x + 3$.
- 40) If w = xy + z where $x = \cos t$; $y = \sin t$; z = t find $\frac{dw}{dt}$

ANSWER ANY 7 $7 \times 5 = 35$

- 41) Let f, g: $(a,b) \rightarrow R$ be differentiable functions. Show that d(fg) = fdg + gdf
- 42) Let $g(x) = x^2 + \sin x$. Calculate the differential dg.
- 43) If the radius of a sphere, with radius 10 cm, has to decrease by 0 1. cm, approximately how much will its volume decrease?
- 44) Let f(x, y) = 0 if $xy \neq 0$ and f(x, y) = 1 if xy = 0.
 - (i) Calculate: $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0).$
 - (ii) Show that f is not continuous at (0,0)
- 45) Let $F(x, y) = x^3 y + y^2 x + 7$ for all $(x, y) \in \mathbb{R}^2$. Calculate $\frac{\partial F}{\partial x}$ (-1,3) and $\frac{\partial F}{\partial y}$ (-2,1).
- 46) Let $f(x, y) = \sin(xy^2) + e^{x^{3+5y}}$ for all $\in \mathbb{R}^2$. Calculate $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$
- 47) Let $w(x, y) = xy + \frac{e^y}{y^2 + 1}$ for all $(x, y) \in \mathbb{R}^2$. Calculate $\frac{\partial^2 w}{\partial y \partial x}$ and $\frac{\partial^2 w}{\partial x \partial y}$
- 48) Let $(x, y) = e^{-2y}\cos(2x)$ for all $(x, y) \in \mathbb{R}^2$. Prove that u is a harmonic function in \mathbb{R}^2 .
- 49) Let $g(x,y)=x^3 yx + \sin(x+y)$, $x(t) = e^{3t}$, $y(t) = t^2$, $t \in \mathbb{R}$. Find $\frac{dg}{dt}$
- 50) If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$ Prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ sin 2u.

The that $x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ sin 2u.
