RAVI MATHS TUITION CENTER, GKM COLONY, CHENNAI- 82. PH: 8056206308 **Ordinary Differential Equations FULL TEST**

12th Standard Reg.No.: Mathe Total Marks: 90

 $20 \times 1 = 20$

	Manis
Exam Time: 03:00:00 Hrs	
ANSWER ALL	

The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/3} + x^{1/4} = 0$ are respectively (a) 2, 3

2) The differential equation representing the family of curves $y = A\cos(x + B)$, where A and B are parameters, is

(a) $\frac{d^2y}{d^2y} - y = 0$ (b) $\frac{d^2y}{dx^2} + y = 0$ (c) $\frac{d^2y}{dx^2} = 0$ (d) $\frac{d^2x}{dy^2} = 0$

3) The order and degree of the differential equation $\sqrt{\sin x}(dx + dy) = \sqrt{\cos x}(dx - dy)$ (b) 2,2(c) 1,1

4) The order of the differential equation of all circles with centre at (h, k) and radius 'a' is

5) The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is

(a) xy = k(b) $y = k \log x$ (d) $\log y = kx$

6) The solution of the differential equation $2x\frac{dy}{dx} - y = 3$ represents

(a) straight lines (d) ellipse

7) The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{\lambda}$ is (b) $\frac{e^{\lambda}}{\cdot}$ (d) e^x

8) The integrating factor of the differential equation $\frac{dy}{dx}$ +P(x)y=Q(x)is x, then P(x)

(b) $\frac{x^2}{2}$

The degree of the differential equation y $y(x) = 1 + \frac{dy}{dx} + \frac{1}{1.2} \left(\frac{dy}{dx}\right)^2 + \frac{1}{1.2.3} \left(\frac{dy}{dx}\right)^3 + \dots$ is (b) 3

10) If p and q are the order and degree of the differential equation $y = \frac{dy}{dx} + x^3 \left(\frac{d^2y}{dx^2} \right) + xy = cosx$, When

(b) p = q (c) p > q(d) p exists and q does not exist

11) The solution of the differential equation $\frac{dy}{dx} + \frac{1}{\sqrt{1-x^2}} = 0$

(c) $y^2 + 2 \sin^{-1} x = c$ (d) $x^2 + 2 \sin^{-1} y = c$ (a) $y + \sin^{-1} x = c$ (b) $x + \sin^{-1} y = 0$

12) The solution of the differential equation $\frac{dy}{dx} = 2xy$ is

 $\frac{\ddot{c}}{dx} = 2xy$ is (c) $y = Ce^{-x^2} + C$ (a) $y = Ce^{x^2}$ (b) $y = 2x^2 + C$

13) The solution of $\frac{dy}{dx} = 2^{y-x}$ is

(b) $2^{x}-2^{y}=C$

The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi(\frac{y}{x})}{\phi'(\frac{y}{x})}$ is

(a) $x\phi\left(\frac{y}{x}\right) = k$ (b) $\phi\left(\frac{y}{x}\right) = kx$ (c) $y\phi\left(\frac{y}{x}\right) = k$

15) If sin x is the integrating factor of the linear differential equation $\frac{dy}{dx} + Pt = Q$, Then P is

(a) log sin x (b) cos x (c) tan x

16) The number of arbitrary constants in the general solutions of order n and n + 1 are respectively

(a) n-1,n	(b) $n,n+1$	(c) $n+1,n+2$	(d) $n+1,n$	
17) Integrating factor o	f the differential equation	$n \frac{dy}{dx} = \frac{x+y+1}{x+1}$ is		
(a) $\frac{1}{x+1}$		(c) $\frac{1}{\sqrt{x+1}}$	(d) $\sqrt{x+1}$	
18) The population P in	any year t is such that the	he rate of increase in the	e population is proportiona	al to the
population. Then				
(a) P=Ce ^{kt}	(b) $P=Ce^{-kt}$	(c) P=Ck	t (d) P=C	
19) P is the amount of o	certain substance left in a	after time t. If the rate of	evaporation of the substa	nce is
	amount remaining, then			
(a) P=Ce ^{kt}	(b) $P=ce^{-kt}$	(c) P=Ckt	(d) $Pt=C$	
20) The slope at any po	oint of a curve $y = f(x)$ is	s given by $rac{dy}{dx}=3x^2$ ar	nd it passes through (-1,1).	Then the
equation of the curv				
(a) $y=x^3+2$	(b) $y=3x^2+4$	(c) $y=3x^4+4$	(d) $y=3x^2+5$	
ANSWER ANY 7				$7 \times 2 = 14$
	owing differential equati	ions, determine its order	, degree (if exists)	
$\sqrt{rac{dy}{dx}} - 4rac{dy}{dx} - 7x$	=0			
22) For each of the foll	owing differential equati	ons, determine its order	, degree (if exists)	
$rac{d^2y}{dx^2}=xy+cos\left(rac{d^2y}{dx^2} ight)$	$\left(\frac{ly}{lx}\right)$			
23) Express each of the	following physical state	ements in the form of di	fferential equation.	
-			duct of population and to t	he
	5,00,000 and the populat			
24) Show that each of t	he following expression:	s is a solution of the cor	responding given different	tial equation.
$y = 2x^2$; $xy' = 2y$				-
25) Show that $y = a \cos \theta$	s bx is a solution of the d	ifferential equation $\frac{d^2y}{dx^2}$	$+b^2y=0.$	
26) Solve the following		tu di		
$sin rac{dy}{dx} = a, y(0) =$	1			
27) Solve the following				
$x \cos y dy = e^{x}(x \log y)$	g x + 1)dx			
28) $(x^2+y^2)dy = xy dx$.	It is given that $y(1) = 1$	and $y(x_0) = e$. Find the v	value of x_0 .	
29) $\frac{dy}{dx} = \frac{\sin^2 x}{1+x^3} - \frac{3x^2}{1+x^3}$	$\frac{1}{2}y$			
30) $x \frac{dy}{dx} + y = x \log x$				
ANSWER ANY 7				$7 \times 3 = 21$
31) Determine the orde	er and degree (if exists) o	f the following different	ial equations:	
$\left(rac{d^4y}{dx^4} ight)^3 + 4{\left(rac{dy}{dx} ight)}^7$			-	
32) Determine the orde	er and degree (if exists) o	f the following different	tial equations:	
$3\left(rac{d^2y}{dx^2} ight)=\left[4+\left(rac{d^2y}{dx^2} ight) ight]$	3			
33) Determine the orde	r and degree (if exists) o	f the following different	tial equations:	

34) Show that $x^2+y^2=r^2$, where r is a constant, is a solution of the differential equation $\frac{dy}{dx}=-\frac{x}{y}$.

 $dy + (xy - \cos x)dx = 0$

- 35) Show that y=mx+ $_{7}$,m \neq 0 is a solution of the differential equation xy'+7 $_{\frac{1}{7}}$ -y=0.
- 36) Solve $(x^2 3y^2) dx^{\frac{1}{12}} y dy = 0$.
- 37) Solve (2x + 3y)dx + (y x)dy = 0.
- 38) Solve $(1+2e^{x/y})dx+2e^{x/y}\left(1-rac{x}{y}
 ight)dy=0$
- 39) A radioactive isotope has an initial mass 200mg, which two years later is 50mg. Find the expression for the amount of the isotope remaining at any time. What is its half-life? (half-life means the time taken for the radioactivity of a specified isotope to fall to half its original value).
- 40) In a murder investigation, a corpse was found by a detective at exactly 8 p.m. Being alert, the detective also measured the body temperature and found it to be 70°F. Two hours later, the detective measured the body temperature again and found it to be 60°F. If the room temperature is 50°F, and assuming that the body temperature of the person before death was 98.6°F, at what time did the murder occur? $[\log(2.43)=0.88789; \log(0.5)=-0.69315]$

ANSWER ANY 7 $7 \times 5 = 35$

- 41) Solve $(1+x^2)\frac{dy}{dx} = 1+y^2$
- 42) Solve $y' = \sin^2(x y + 1)$.
- 43) Solve $\frac{dy}{dx} = \frac{x-y+5}{2(x-y)+7}$.
- 44) Solve $[y(1-x \tan x)+x^2 \cos x]dx-dy=0$
- 45) Find the differential equation of the family of circles passing through the points (a,0) and (-a,0).
- 46) Solve : $\frac{dy}{dx} = \sqrt{4x + 2y 1}$
- 47) Solve: $\frac{dy}{dx} = (3x + y + 4)^2$.
- 48) Solve $(1+x^3)\frac{dy}{dx} + 6x^2y = 1+x^2$.
- 49) Solve $ye^y dx = (y^3 + 2xe^y) dy$
- 50) Solve: $(1 + e^{2x}) dy + (1 + y^2)e^x dx = 0$ when y(0) = 1
