RAVI MATHS TUITION CENTER ,GKM COLONY, CH- 82. PH: 8056206308 APPLICATION OF VECTOR ALGEBRA FULL TEST

12th Standard

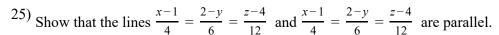
Maths

Reg.No.:

Total Marks: 90

Exam Time: 03:00:00 Hrs	S		Total Marks: 90				
ANSWER ALL			$20 \times 1 = 20$				
If a vector $\overset{\rightarrow}{\alpha}$ lies in the	e plane of $\vec{\beta}$ and $\vec{\gamma}$, then						
(a) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$	(b) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$		(d) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$				
2) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$, then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is							
(a) $ \vec{a} \vec{b} \vec{c} $	(b) $\frac{1}{3} \vec{a} \vec{b} \vec{c} $		(c) 1 (d) -1				
3) The volume of the parallelepiped with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$, $\hat{i} + \hat{j} + \pi \hat{k}$ is							
(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) π	(d) $\frac{\pi}{4}$				
If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] = \frac{\pi}{4}$, then the angle between \vec{a} and \vec{b} is							
(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$				
If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then the angle between							
(a) $\frac{\pi}{2}$	(b) $\frac{3\pi}{6}$	(c) $\frac{\pi}{4}$	(d) π				
6) If the volume of the pa	rallelepiped with $\vec{a} \times \vec{b}$, \vec{b}	$\times \vec{c}, \vec{c} \times \vec{a}$ as cotermino	us edges is 8 cubic units, then				
the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})$, $(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})$ as coterminous edges is, (a) 8 cubic units (b) 512 cubic units (c) 64 cubic units (d) 24 cubic units							
			$(\vec{a}, \vec{b}) \neq 0 \text{ and } \vec{a} \cdot \vec{b} \neq 0$				
then \vec{a} and \vec{c} are (a) perpendicular	(b) parallel (c) incline	ed at an angle $\frac{\pi}{3}$ (d)	inclined at an angle $\frac{\pi}{6}$				
8) If $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 5\hat{k}$, $\vec{c} = 3\hat{i} + 5\hat{j} - \hat{k}$ then a vector perpendicular to \vec{a} and lies in the plane							
containing \vec{b} and \vec{c} is $(a) \qquad \qquad \qquad \qquad -17\hat{i} + 21\hat{j} - 97k$	(b) $\hat{i} + 21\hat{j} - 123k$	(c) $-17\hat{i} - 21\hat{j} + 197k$	(d) $\hat{-}17\hat{i} - 21\hat{j} - 197k$				
9) The coordinates of the 3 are	point where the line $\vec{r} = ($	$(6\hat{i} - \hat{j} - 3\hat{k}) + t(\hat{i} + 4\hat{j})$ mo	eets the plane $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) =$				
(a) (2,1,0)	(b) (7,1,7)	(c) (1,2,6)	(d) (5,1,1)				
10) Distance from the orig	gin to the plane $3x - 6y + 2$	z 7 = 0 is					
(a) 0	(b) 1	(c) 2	(d) 3				
11) The distance between	the planes $x + 2y + 3z + 7$	= 0 and $2x + 4y + 6z + 7$	=0				

(a) $\frac{\sqrt{7}}{2\sqrt{2}}$	(b) $\frac{7}{2}$	(c) $\frac{\sqrt{7}}{2}$	(0	$\frac{7}{2\sqrt{2}}$	
(a) $(0,6,1)$ — and	ion $\vec{r} = (\hat{i} - 2\hat{j} - \hat{k}) + t(6\hat{i} - (1,2,1))$ (b) (0,6,-1) and (1,	(4,2) (c) (1,-2,-	1) and (1,4,-2)	(d) (1,-2,-1)	and $(0,-6,1)$
13) If the distance of then the values of			distance from t		+z+k=0,
(a) ± 3 14) If the length of the	(b) ± 6 ne perpendicular from the or	(c) -3, 9 rigin to the plane 2	$2x + 3y + \lambda z = 1$	(d) 3, 9 , $\lambda > 0$ is $\frac{1}{5}$ the	en the value
of λ is (a) $2\sqrt{3}$	(b) $3\sqrt{2}$		(c) 0	(d) 1	
Let \vec{a} , \vec{b} and \vec{c}	be three non- coplanar vector $\vec{c} \times \vec{a}$ $\vec{a} \times \vec{b}$	ors and let \vec{p} , \vec{q} , \vec{r}	be the vectors	defined by the	relations
	$\frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ Then the	ne value of $(\vec{a} +$	$(\vec{b}) \cdot \vec{p} + (\vec{b} + \vec{c})$	$(\vec{c} + \vec{a}) \cdot \vec{q} + (\vec{c} + \vec{a})$). $\vec{r}=$
(a) 0 16)	(b) 1	(c) 2	(^ ^)	(d) 3	
The number of v	ectors of unit length perpend	dicular to the vect	fors $\binom{n}{i+j}$ an	$d \left(j + k \right)$ is	
$ \begin{array}{ccc} \text{(a)} & 1 \\ 17) & \overrightarrow{} & \overrightarrow{} & \overrightarrow{} \\ \end{array} $	(b) 2	(c) 3	,	(d) ∞	
	$(\vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a})$ $(\vec{d}) = (\vec{a}) + (\vec{b}) + (\vec{c})$		(d) a, b, c ar	e coplanar	
18) If $\vec{a} = i + 2j + 3$	$(\vec{k}, \vec{b}) = (\vec{k}, \vec{k}, \vec{c}) = (\vec{k}, \vec{k}, \vec{c})$	$\vec{i} + \vec{j}$ then $\vec{a} + ($	$-\overrightarrow{b}$ will be per	rpendiculur to	\overrightarrow{c} only when
t = (a) 5		(c) 3		(d) $\frac{7}{3}$	
19) If $\vec{a} = \vec{a} \vec{e}$ then	$\vec{e} \cdot \vec{e}$			J	
(a) 0	(b) e	(c) 1		(d) $\vec{0}$	
	by a force $\vec{F} = \vec{i} + m\vec{j} - \vec{k}$ in the is 12 units, then m is	in moving the poi	nt of application	n from(1, 1, 1)	to (3, 3, 3)
(a) 5 ANSWER 7 ONLY	(b) 2	(c) 3		(d) 6	$7 \times 2 = 14$
21) If \vec{a} , \vec{b} , \vec{c} are thr	ee vectors, prove that $[\vec{a} + \vec{a}]$	\vec{c} , \vec{a} + \vec{b} , \vec{a} + \vec{b} +	$[\vec{c}] = [\vec{a}, \vec{b}, \vec{c}]$		
22) If $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ 23) Find the volume $-6\hat{i} + 14\hat{j} + 10\hat{k}$,	\hat{k} , $\vec{6} = 2\hat{i} + \hat{j} - 2\hat{k}$, $\vec{c} = 3\hat{i} + \hat{k}$ of the parallelepiped whose $14\hat{i} - 10\hat{j} - 6\hat{k}$ and $2\hat{i} + 4\hat{j} - \hat{k}$	$2\hat{j} + \hat{k}$ find $\vec{a} \cdot (\vec{b})$ coterminous edge	$\times \vec{c})$.	ed by the vector	ors
Prove that $(\vec{a}. (\vec{b})$	$(\vec{a} \times \vec{c})\vec{a} = (\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c})$				



26) Find the angle between the following lines.

$$\vec{r} = (4\hat{i} - \hat{j}) + t(\hat{i} + 2\hat{j} - 2\hat{k}), \hat{r} = (\hat{i} + 2\hat{j} - 2\hat{k}) + s(-\hat{i} - 2\hat{j} + 2\hat{k})$$

- 27) Show that the points (2, 3, 4), (-1, 4, 5) and (8, 1, 2) are collinear.
- 28) Find the angle between the planes $\vec{r} \cdot (\hat{i} + \hat{j} 2\hat{k}) = 3$ and 2x 2y + z = 2
- ²⁹⁾ Find the distance of a point (2,5,-3) from the plane \vec{r} . $(6\hat{i}-3\hat{j}+2\hat{k})=5$
- 30) Find the distance between the parallel planes x+2y-2z=0 and 2x+4y-4z+5=0

ANSWER 7 ONLY $7 \times 3 = 21$

- A particle acted upon by constant forces 2j + 5j + 6k and $-\hat{i} 2j \hat{k}$ is displaced from the point (4, -3, -2) to the point (6, 1, -3). Find the total work done by the forces.
- 32) Prove by vector method that if a line is drawn from the centre of a circle to the midpoint of a chord, then the line is perpendicular to the chord.
- 33) Prove by vector method that an angle in a semi-circle is a right angle.
- 34) Prove by vector method that the area of the quadrilateral ABCD having diagonals AC and BD is

$$\frac{1}{2} \left| \overrightarrow{AC} \times \overrightarrow{BC} \right|.$$

- Forces of magnit $5\sqrt{2}$ and $5\sqrt{2}$ units acting in the directions 3i + 4j + 5k and 10i + 6j 8k respectively, act on a particle which is displaced from the point with position vector 4i + 3j 2k to the point with position vector $6i + \hat{j} 3k$. Find the work done by the forces.
- Find the magnitude and direction cosines of the torque of a force represented by 3i + 4j 5k about the point with position vector 2i 3j + 4k acting through a point whose position vector is 4i + 2j 3k.
- Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a}, \vec{b}, \vec{c}]^2$
- ³⁸⁾ For any vector \vec{a} , prove that $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times \vec{a} \times \hat{k} = 2\vec{a}$.
- 39) Show that the straight lines x + 1 = 2y = -12z and x = y + 2 = 6z 6 are skew and hence find the shortest distance between them.
- Find the equation of the plane passing through the intersection of the planes \vec{r} . $(\hat{i} + \hat{j} + \hat{k}) + 1 = 0$ and \vec{r} . $(2\hat{i} 3\hat{j} + 5\hat{k}) = 2$ and the point (-1, 2, 1)

ANSWER 7 ONLY $7 \times 5 = 35$

41) By vector method, prove that $cos(\alpha + \beta) = cos \alpha cos \beta$ - $sin \alpha sin \beta$

42) If
$$\vec{a} = \vec{i} - \vec{j}$$
, $\vec{b} = \hat{i} - \hat{j} - 4\hat{k}$, $\vec{c} = 3\hat{j} - \hat{k}$ and $\vec{d} = 2\hat{i} + 5\hat{j} + \hat{k}$
(i) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{b}, \vec{d}]\vec{c} - [\vec{a}, \vec{b}, \vec{c}]\vec{d}$
(ii) $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{c}, \vec{d}]\vec{b} - [\vec{b}, \vec{c}, \vec{d}]\vec{a}$

- Determine whether the pair of straight lines $\vec{r}(2\hat{i}+3j-\hat{k})+t(2\hat{i}+3\hat{j}+2\hat{k})$, $\vec{r}=(2\hat{j}-3\hat{k})+s(\hat{i}+2\hat{j}+3\hat{k})$ are parallel. Find the shortest distance between them.
- Show that the lines $\frac{x-3}{3} = \frac{y-3}{-1} = z-1$ and $\frac{x-6}{2} = \frac{z-1}{3}$, y-2=0 intersect. Also find the point of intersection
- 45) Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane passing through the points (-1, 2, 0), (2, 2, -1) and parallel to the straight line $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$
- 46) Find parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, -2, 3) and parallel to the straight line passing through the points (2, 1, -3) and (-1, 5, -8)
- 47) Find the parametric vector, non-parametric vector and Cartesian form of the equations of the plane passing through the points (3,6,-2), (-1,-2,6), and (6,-4,-2).
- 48) If the straight lines $\frac{x-1}{2} = \frac{y+1}{\lambda} = \frac{z}{2}$ and $\frac{x-1}{2} = \frac{y+1}{\lambda} = \frac{z}{\lambda}$ are coplanar, find λ and equations of the planes containing these two lines.
- Show that the lines $\vec{r} = (\hat{i} 3\hat{j} 5\hat{k}) + s(3\hat{i} + 5\hat{j} + 7\hat{k})$ and $\vec{r} = (2\hat{i} + 4\hat{j} + 6\hat{k}) + t(\hat{i} + 4\hat{j} + 7\hat{k})$ are coplanar. Also, find the non-parametric form of vector equation of the plane containing these lines
- 50) Find the coordinates of the foot of the perpendicular and length of the perpendicular from the point (4,3,2) to the plane x + 2y + 3z = 2
