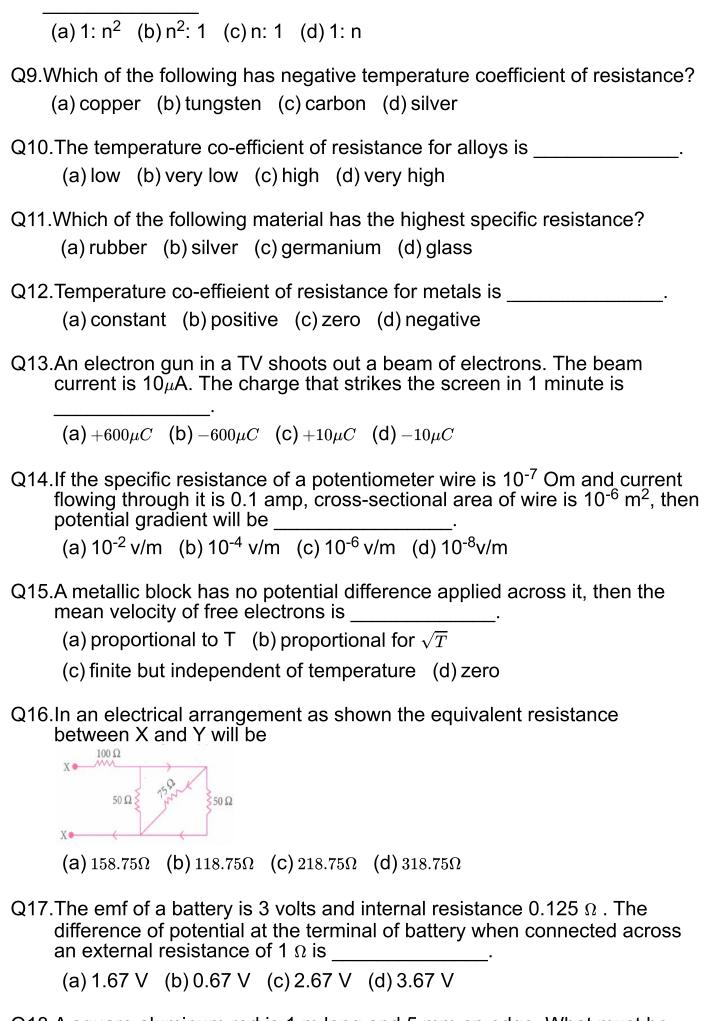
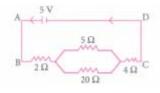

Ravi home tutions 12th Standard Physics

Total Marks: 875


Multiple Choice Question

182 x 1 = 182

Q1. What is the current drawn out from the battery?


- (a) 1 A (b) 2 A (c) 3 A (d) 4 A
- Q2.The temperature coefficient of resistance of a wire is 0.00125 per °C. At 20°C, its resistance is 1 Ω . The resistance of the wire will be 2 Ω at _____.
 - (a) 800 °C (b) 700 °C (c) 850 °C (d) 820 °C
- Q3. The internal resistance of a 2.1 V cell which gives a current of 0.2 A through a resistance of 10 Ω is _____.
 - (a) 0.2 Ω (b) 0.5 Ω (c) 0.8 Ω (d) 1.0 Ω
- Q4.A piece of copper and another of germanium are cooled from room temperature to 80 K. The resistance of _____.
 - (a) each of them increases (b) each of them decreases
 - (c) copper increases and germanium decreases
 - (d) copper decreases and germanium increases
- Q5.In Joule's heating law, when R and t are constant, if the H is taken along the y axis and I² along the x axis, the graph is _____.
 - (a) straight line (b) parabola (c) circle (d) ellipse
- Q6. The colour code on a carbon resistor is red red black. The resistance of the resistor is _____.
 - (a) 2.2Ω (b) 22Ω (c) 220 2.2Ω (d) $2.2k\Omega$
- Q7. The electrical resistivity of a thin copper wire and a thick copper wire are respectively $P_1\Omega$ m and $P_2\Omega$ m Then_____.
 - (a) $P_1>P_2$ (b) $P_2>P_1$ (c) $P_1=P_2$ (d) $rac{P_1}{P_2}$
- Q8.When 'n' resistors of equal resistance (R) are connected in series and in parallel respectively, then the ratio of their effective resistance is

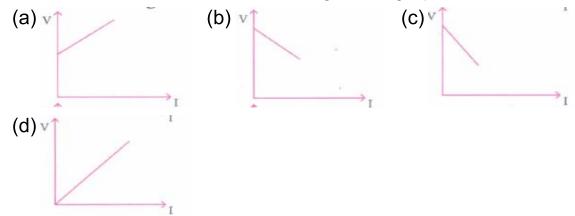
Q18.A square aluminum rod is 1 m long and 5 mm on edge. What must be the radius of another aluminum rod whose length is 1 m and which has the same resistance as that of square Aluminum rod?

,		(1) 0 0	() (0	(I) = 0
(a) 1.4 mm	(b) 2.8 mm	(c) 4.2 mm	(d) 5.6 mm

Q19. Four resistances are connected to a 5V battery of negligible internal resistance as shown what is the potential across 2Ω ?

(a)
$$0.5 \text{ V}$$
 (b) 1.5 V (c) 1.0 V (d) 1.0 V

Q20.An unknown resistance is connected in parallel with a 15Ω resistance and a 12V battery. What is the value of the unknown resistance if the current in the circuit is 2A?


```
(a) 10\Omega (b) 20\Omega (c) 30\Omega (d) 40\Omega
```

Q21. Five 3 resistances are arranged in a polygon (5 sides). What is the resistance between any two corners?

(a)
$$2.4\Omega$$
 (b) 3Ω (c) 9Ω (d) 5Ω

Q22.How many 160 Ω resistor in parallel are required to carry a current of 5 A on a 100 V line?

Q23. The potential difference across the terminals of a cell varies with the current drown from the cell according to the graph.

- Q24.In an experiment with potentiometer when the galvanometer deflection is zero, then no current flows in
 - (a) the wire of potentiometer (b) the primary circuit
 - (c) the galvanometer circuit (d) accumulator cell

Q25.Kirchoff's I law i.e, $\Sigma i = 0$ at a junction, deals with the conservation of

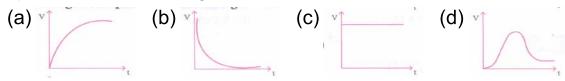
(a) charge (b) energy (c) momentum (d) angular momentum

Q26. The potential gradient of the potentiometer wire depends on

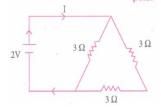
(a) only on the current that flows

(b) only on the resistance per unit length of the wire (c) both the above mentioned (d) none of the above
Q27. The current in the given circuit is (a) $\frac{1}{8}A$ (b) $\frac{2}{9}A$ (c) $\frac{2}{9}A$ (d) $1A$
Q28.A potential difference is applied an the ends of a metallic wire. If the potential difference is doubled, the drift velocity (a) will be doubled (b) will be halved (c) will be quadrupled (d) will remain unchanged
Q29.Resistance between the points A and B in the given figure is (a) 9Ω (b) 2Ω (c) 3Ω (d) 6Ω
Q30.Resistance increases with increases in temperature for (a) conductor (b) semiconductors (c) insulators (d) superconductor
Q31.Which of the following is an identical? (a) germanium, silicon (b) silver, wood (c) aluminum, constantan (d) bakelite, iron
Q32.A bird sitting on an insulated wire carrying a current feels quite safe because (a) the bird is a non-conductor of electricity (b) resistance of the bird is very large (c) there is a large potential difference between bird and wire (d) there is no potential difference between bird and wire
Q33.Conductor which obey ohm's law are called (a) dielectrics (b) superconductors (c) ohmic conductors (d) semiconductors
Q34.The conductivity is the reciprocal of (a) resistance (b) specific resistance (c) conductance (d) potential difference
Q35.Electrical resistance is given by

(a) $_{R}=rac{Al}{\sigma}$	(b) $_{R}=rac{l}{\sigma A}$	(c) $_{R}=rac{\sigma A}{l}$	(d) $R=rac{\sigma}{Al}$
U	σ	ι	210

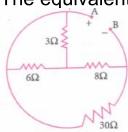

Q36.Peltier effect is the converse of

- (a) Joule effect (b) Raman effect (c) Thomson effect
- (d) Seebeck effect


Q37. Nichrome wire is used as the heating element because it has

- (a) low specific resistance (b) low melting point
- (c) high specific resistance (d) high specific resistance

Q38.An ideal cell is connected to a capacitor through a voltmeter. The reading V of the voltmeter is plotted against time. Which of the following best represents the resulting curve?



Q39. The value of current I in the network as shown is

(a) $\frac{1}{9}A$ (b) $\frac{2}{9}A$ (c) $\frac{3}{9}A$ (d) 1A

Q40. The equivalent resistance between A and B in the figure is

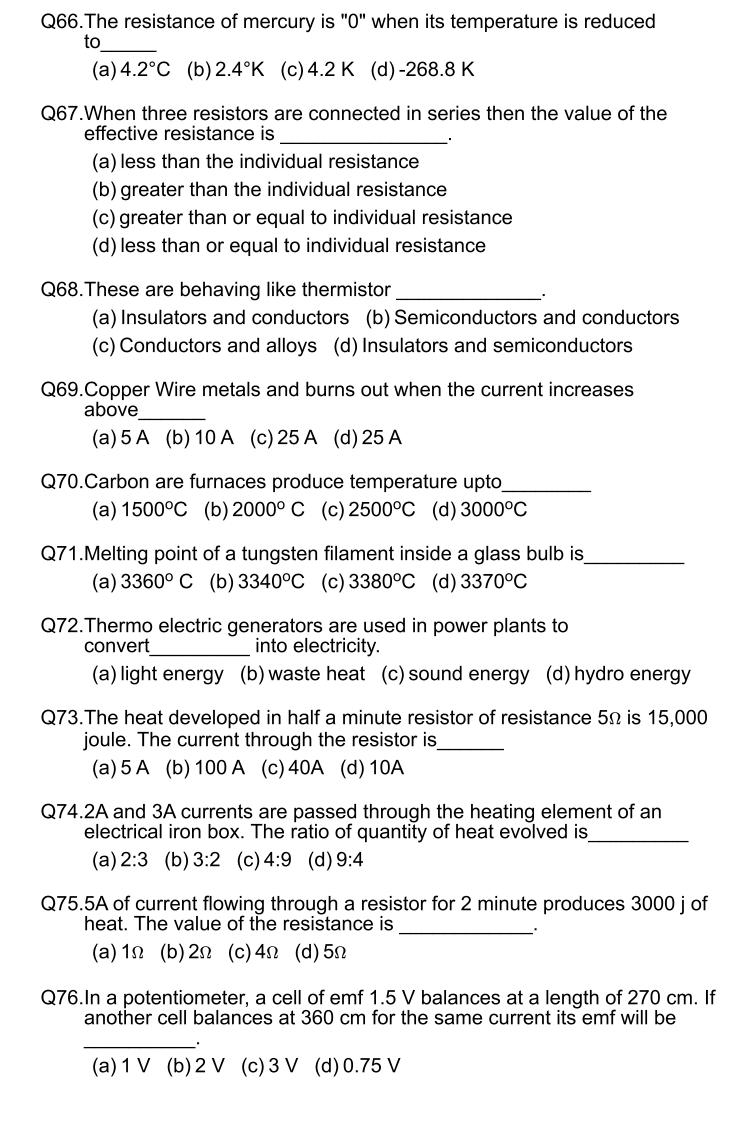
(a) 15Ω (b) 7.5Ω (c) 25Ω (d) 30Ω

Q41. The heating element that does not oxidize readily is an alloy of metals made of .

- (a) Nickel and Iron (b) Nickel and Chromium (c) copper and Manganin
- (d) Nickel and Copper

Q42. Which of the following is not related to joule's law of heating?

(a)
$$H=VIt$$
 (b) $H=I^2Rt$ (c) $H=rac{V^2t}{R}$ (d) $H=rac{I^2R}{t}$


Q43. Fuse wire is an alloy of

(a) 37 % lead and 63 % tin (b) 63 % lead and 37 % tin

(c) 37 % copper and 63 % tin (d) 63 % copper and 37 % tin
Q44.In an electric circuit fuse wire is connected in (a) parallel (b) star connection (c) delta connection (d) series
Q45.Joules's heating effect is desirable in (a) AC dynamo (b) DC dynamo (c) water heater (d) transformer
Q46. The sensitivity of a potentiometer can be increased by
 (a) decreasing the length of potentiometer wire (b) increasing the length of potentiometer wire (c) increasing the emf of the cell used in primary circuit (d) all the above
Q47.Two identical resistors are connected in parallel then connected in series. The effective resistance are in the ratio (a) 1:2 (b) 2:1 (c) 1:4 (d) 4:1
Q48.The resistance of the wire varies inversely as (a) area of cross section (b) resistivity (c) length (d) temperature
Q49. The ratio of voltage and current in a dosed circuit is (a) decreases (b) increases (c) remains constant (d) varies
Q50.The curve representing Ohm's law is a (a) linear (b) parabola (c) hyperbola (d) none of the above
Q51.By increasing the temperature, the specific resistance of a conductor and a semiconductor (a) increases for both (b) increases, decreases respectively (c) decreases for both (d) decreases, increases respectively
Q52.The thermistors are usually made of (a) metals with low temperature coefficient of resistivity (b) metals with high temperature coefficient of resistivity (c) metal oxides with high temperature coefficient of resistivity (d) semi conducting materials with low temperature coefficient of resistivity
Q53.The resistivity of a wire depends on (a) length (b) material (c) area of cross section (d) all the above
Q54.For which of the following substances, resistance decreases with temperature?
(a) copper (b) platinum (c) mercury (d) carbon

Q55.Which material is having a small value of temperature coefficient of resistance?
(a) copper (b) constantan or manganin (c) nichrome (d) both b & c
Q56.If the potential difference V applied across a conductor increased to 2V, the drift velocity of the electron be (a) doubled (b) halved (c) tripled (d) no change
Q57.Which energy is used to liberate the outer electron from the individual atoms? (a) Thermostatic external energy (b) Thermodynamic internal energy (c) Thermodynamic external energy (d) Thermostatic internal energy
Q58.When the free electrons are moving in all possible directions, the value of the current produced is (a) IA (b) 2A (c) 0 A (d) 1.2A
Q59.The unit of electromotive force is (a) joule (b) newton (c) coulomb (d) volt
Q60.Generally the instantaneous current is represented by (a) i (b) l (c) dl (d) di
Q61.The direction of conventional current is taken as the direction of flow of (a) positive charges (b) same direction of flow of electron (c) opposite to positive charges (d) all of these
Q62.Current is aquantity. (a) vector (b) scalar (c) physical (d) not measurable
Q63.The drift velocity is equal to mobility when (a) the electric field is parallel to the motion of electrons (b) the electric field is unity (c) the absence of electric field (d) either (a) or (b)
Q64.Calculate the mobility of a free electron in an electric field of 10^{+2} N/C. (a) 10^{-4} m ² V ⁻¹ s ⁻¹ (b) 10^{-5} m ² V ⁻¹ s ⁻¹ (c) 10^{-3} m ² V ⁻¹ s ⁻¹ (d) 10^{5} m ² V ⁻¹ s ⁻¹
Q65.A resistance of a metal wire of length AB is 2Ω . Another wire of length PQ of the same metal with twice the diameter of the wire AB is found to have the same resistance of 2Ω . What is the length of PQ?

(a) 4 AB (b) 2 AB (c) 1AB (d) 6 AB

Q77.When a current of 5 A flows through a conductor of resistance 3 Ω the loss of power due to joule heating effect is (a) 75 W (b) 25 W (c) 70.7 W (d) 45 W
(a) 13 VV (b) 23 VV (c) 10.1 VV (d) 43 VV
Q78.The potentiometer wire is made of (a) Manganin (b) Copper (c) Aluminium (d) Nichrome
Q79.Kirchoff's II law isa consequence of conservation of (a) charges (b) momentum (c) energy (d) power
Q80.The tolerance of sliver ring in resistors is (a) 5% (b) 10% (c) 20 % (d) 2 %
Q81.Relation between current density and drift velocity is (a) en V_d (b) nAe V_d (c) $\frac{n}{eV_d}$ (d) $\frac{V_d}{ne}$
Q82.The average time between two successive collision of an electron is 3.64 x 10^{-8} s. Its mobility is (a) 6.4×10^3 m ² V ^{-I} S ^{-I} (b) 640 m ² m V S ⁻¹ (c) 6.4×10^3 m V ⁻¹ S ⁻¹ (d) 6.4×10^3 m ² V S ⁻¹
Q83.A metal wire of current density is 3.2×10^7 Am ⁻² has 10^{28} electron/m ³ . The average drift velocity is (a) 0.02 m.s ⁻¹ (b) 200 m s ⁻¹ (c) 1.6×10^{-2} m s ⁻¹ (d) 3×10^{-2} m s ⁻¹
Q84.How many electrons constitute current of one ampere? (a) 6.35×10^{-19} (b) 6.28×10^{18} (c) 6.28×10^{20} (d) 6.25×10^{18}
Q85.The motion of electric charges is called (a) static electricity (b) dynamic electricity (c) charge electricity (d) current electricity
Q86. The mobility of an electron is one million times less than that of its specific charge, the mean time taken between two successive collisions is (a) 1ms (b) $1\mu s$ (c) 1nano sec (d) 1giga sec
Q87.A potential of 1 kV is applied between the ends of conductor of length 20 cm. The drift velocity of electron in this field is 3.52 x 10 ⁶ m/s. The relaxation time for the free electrons is (a) 2 nano sec (b) 4 nano sec. (c) 6 nano sec (d) 8 nano sec.
Q88.The unit of current density is (a) Am ⁻² (b) Am ² (c) A ² m- ² (d) A ⁻² m ⁻²
Q89.The current is directly proportional to

(a) mobility (b) number of electrons (c) electric field (d) all the above
Q90.The reciprocal of the resistance is (a) conductance (b) conductivity (c) resistivity (d) specific resistance
Q91.Resistance of a metal wire of length 10 cm is 2. If the wire is stretched uniformly to 50 cm the resistance is (a) 25Ω (b) 10Ω (c) 5Ω (d) 50Ω
Q92.When the diameter of a conductor is doubled its resistance (a) decreases twice (b) decreases four times (c) decreases sixteen times (d) increases four times
Q93.The unit of conductivity is (a) mho (b) ohm (c) ohm-rn (d) mho-m-l
Q94.The reciprocal of conductivity is (a) specific conductance (b) specific resistance (c) resistance (d) conductance
Q95.The specific resistance for the insulators is in the range of (a) $10^{-6}10^{-8}\Omega m$ (b) $10^8-10^{14}\Omega m$ (c) $10^{-8}-10^{-14}\Omega m$ (d) $10^{-8}-10^{14}\Omega m$
Q96.The specific resistance of silver is (a) 1.7 x $10^{-8}\Omega m$ (b) 1.8 x $10^{-7}\Omega m$ (c) 1.6 x $10^{8}\Omega m$ (d) 16 x $10^{-9}\Omega m$
Q97.The specific resistance of silicon is (a) 0.46 (b) 10 x 10 ⁻⁸ (c) 3200 (d) 2300
Q98.Germanium and silicon are the examples of (a) insulators (b) conductors (c) semi insulators (d) semiconductors
Q99.The electrical resistivity drops to zero for (a) conductors (b) insulators (c) super conductors (d) semiconductors
Q100.The transition temperature of mercury is (a) 4.2°C (b) 4.2 K (c) 2.4°C (d) 2.4K
Q101.The phenomenon of superconductivity was first observed by (a) George Simon Ohm (b) Volta (c) Faraday Onnes (d) Kammerlingh Onnes
Q102.The temperature at which normal conductor is converted into super conductor is

(a) neutral temperature (b) transition temperature (c) critical temperature (d) both (b) and (c)
Q103.The first theoretical explanation superconductivity was given by
(a) BSC theory (b) BCS theory (c) SBC theory (d) None
Q104.For super conductors, the magnetic flux lines are (a) included (b) excluded (c) 0 (d) maximum
Q105.Super conductors can be used as storage elements in (a) TV (b) camera (c) computers (d) computers
Q106.In a carbon resistor, the third ring represents (a) powers of zeros (b) powers of ten (c) ten (d) infinity
Q107.If there is no coloured ring in the right hand side of the carbon resistor, then the resistor has (a) 18% tolerance (b) 20% tolerance (c) 22% tolerance (d) 24% tolerance
Q108.The tolerance of the resistors are represented by (a) Silver - 10%, Gold - 5%, Red - 2%, Brown - 1% (b) Silver - 1%, Gold - 2%, Red - 5%, Brown - 10% (c) Silver - 1%, Gold - 10%, Red - 5%, Brown - 2% (d) Both (a) and (c)
Q109.The brown ring at one end of a carbon resistor indicates a tolerance of (a) \pm 1% (b) \pm 2% (c) \pm 5% (d) \pm 10%
Q110.When three resistors are connected in parallel then the value of the effective resistance is (a) less than or equal to individual resistance (b) greater than or equal to individual resistance (c) less than the individual resistance (d) greater than the individual resistance
Q111.The temperature coefficient of resistance is positive (a) for metals (b) for insulators (c) (a) and (b) (d) all the above
Q112.The temperature coefficient of resistance is negative for (a) for metals (b) ebonite (c) (a) and (b) (d) none
Q113.The temperature coefficient of resistance increases for the metals when

(c) does not depend upon the temperature (d) either (a) or (b)
Q114.The unit of temperature coefficient of resistance is (a) °C (b) °C ⁻¹ (c) -C ⁻² (d) °C ²
Q115.A cell of emf 2.2V sends a current of 0.2A through a resistance of 10 n. The internal resistance of the cell is (a) 0.1Ω (b) 1Ω (c) 2Ω (d) 1.33Ω
Q116.Ohm's law is applicable only for (a) complicated circuits (b) primary circuits (c) simple circuits (d) secondary circuits
Q117.The algebraic sum of the currents meeting at any junction in the circuit is (a) infinity (b) negative value (c) 2A (d) zero
Q118.Kirchhoff's law is applicable only for (a) simple circuits (b) primary circuits (c) complicated circuits (d) secondary circuits
Q119.Kirchhoff's I law is named as (a) ohm's law (b) voltage law (c) resistance law (d) current law
Q120.Kirchhoff's II law is named as (a) voltage law (b) resistance in series (c) resistance in parallel (d) current law
Q121.Kirchhoff's I law is a consequence of (a) law of conservation of energy (b) law of conservation of charges (c) law of conservation of currents (d) law of conservation of voltages
Q122.In Kirchhoff's II law the current in clockwise direction is taken as (a) positive (b) negative (c) neutral (d) no direction
Q123.In the case of Wheatstone's Bridge the bridge balance condition will be obtained only when (a) the current through the galvanometer is maximum (b) the current through the galvanometer is minimum (c) the current through the galvanometer is zero (d) the current through the galvanometer is infinity

(a) the temperature increases (b) the temperature decreases

Q124.In the case of meter bridge manganin wire is used because it has
(a) low temperature coefficient of resistance
(b) high temperature coefficient of resistance
(c) temperature coefficient of resistance is zero
(d) temperature coefficient of resistance is maximum
Q125.The small error in Meter Bridge experiment due to end resistance will be eliminated by
(a) by interchanging the resistances
(b) by interchanging the galvanometer and jockey
(c) by interchanging the battery and the jockey
(d) without changing the resistances
Q126.Potentiometer is an instrument used for the measurement of
(a) current (b) resistance (c) capacitance (d) potential difference
Q127.The temperature Coetti unit of tungsten is(oC) ⁻¹
(a) 3.9×10^{-3} (b) 4.9×10^{-3} (c) 5.0×10^{-3} (d) 4×10^{-3}
Q128.If charge of 60 C passes through a bulb for 4 minutes then the current
flows through it is
(a) 1 A (b) 0.5 A (c) 0.25 A (d) 0.75 A
Q129.Two wires of equal lengths equal diameters having resistivities p_1 , and p_2 , are connected in series. The effective resistivity of the combination is
(a) $p_1 - p_2$ (b) $p_1 + p_2$ (c) $\sqrt{\rho_1 \rho_2}$ (d) $\frac{1}{2}(\rho_1 + \rho_2)$
Q130.Which of the following statements are correct in the form of a wire the resistively of conductor (i) depends on material (ii) depends on length (iii) depends on temperature (iv) depends on diameter
(a) i & ii (b) ii & iii (c) i & iii (d) i & iv
Q131.The equivalent resistance in series combination is
(a) Larger than the smallest resistance
(b) Larger than the largest resistance
(c) Smaller than the largest resistance
(d) Smaller than the smallest resistance
Q132.If n cells of each of emf \boldsymbol\xi are connected in parallel, then the

Q133.The terminal voltage of battery is (a) always less than its emf (b) always greater than its emf (c) always equal to its emf (d) always greater than its emf depending on the direction of current through the battery
Q134.Which one of the following I - V graph for diode value?
$\begin{array}{c} \text{(a)} \\ \\ \\ \\ \\ \\ \\ \end{array}$
$(d) = \bigvee_{v} d$
Q135.If the length of conductor is haled, then its conductivity would be
(a) quadrupled (b) haled (c) double (d) unchanged
Q136.For the fuse wire which of the following characteristic is in material? (a) Radius (b) Resistivity (c) length (d) none of these
Q137.If the resistance of a coil is 3 ohm at 20 °C and α = 0.004/ °C then its resistance at 100 °C is (a) 1.98Ω (b) 3.96Ω (c) 7.92Ω (d) 39.6Ω
Q138.A semiconductor with a negative coefficient of resistance is called
(a) thyristor (b) insulator (c) dielectric (d) thermistor
Q139. The resistance of the dry skin of a human body is around
(a) 1000Ω (b) 100Ω (c) 500Ω (d) 50Ω
Q140.What is the equivalent emf of the following combination? 6V 6V 6V 6V (a) 36 V (b) 18 V (c) 12 V (d) 24 V
Q141.If the length and area of cross-section of a conductor is doubled then its resistance will be .

(a) doubled (b) quadrupled (c) unchanged (d) halved

(a) $n\varepsilon$ (b) $n^2\varepsilon$ (c) $\frac{\varepsilon}{n}$ (d) None of the above

Q142.Which one of the following does not possess negative temperature coefficient of resistance?
(a) Gutta Parcha (b) Rubber (c) Nichrome (d) Papper
Q143.Two wires have the some length. But, area of cross-section of one is 9 times that of the other. If the resistance of thinner wire 300Ω , then resistance of the thicker wire is (a) 66.6Ω (b) 33.3Ω (c) 100Ω (d) 600Ω
Q144.The Wheatstone bridge is more accurate than the other instruments since it
(a) is based on Kirchoff's rules. (b) is a null method (c) it four resistors (d) is not based on Ohm's law
Q145.The conductors that do not follow ohm's law are called
(a) super conductors (b) ohmic conductors (c) non-ohmic conductors (d) none of the above
Q146.When three conductors having conductance about p_1 , p_2 , and p_3 are connected in series their equivalent conductance is (a) p_1 + p_2 + p_3 (b) $\frac{\rho_1\rho_2\rho_3}{\rho_1+\rho_2+\rho_3}$ (c) $\frac{\rho_1\rho_2+\rho_3\rho_1+\rho_2\rho_3}{\rho_1\rho_2\rho_5}$ (d) $\frac{\rho_1\rho_2\rho_3}{\rho_1\rho_2+\rho_3\rho_3+\rho_3\rho_1}$
Q147.The equivalent resistance of the following combination is $\frac{6}{5}$ ohm then the value of resistance R ₂ is
Q148.The effective resistance of the following combination is
25 Tro
(a) $2/15\Omega$ (b) 3.75Ω (c) 15Ω (d) 7.5Ω
Q149.When n resistor of equal resistors are connected in series, the effective resistance is (a) $\frac{R}{n}$ (b) nR (c) $\frac{1}{nR}$ (d) $\frac{n}{R}$
Q150.The unit of mobility of free electron is (a) Vm ⁻¹ s ⁻² (b) m ² Vs ⁻¹ (c) m ² V ⁻¹ s ⁻¹ (d) m ² V ⁻¹ s

Q151.If the temperature of a wire increase, then its resistance will be
(a) decreased (b) increased (c) constant (d) neither increased nor decreased
Q152.Which of the following has maximum electrical resistivity? (a) Copper (b) Aluminium (c) Iron (d) Silver
Q153.If the length of the conductor is doubted and its area, is reduced to half of its value, then its resistance would be (a) increased by two times (b) increased by four times (c) decreased by four times (d) decreased by two times
Q154.Which colour of the ring indicates 10% tolerance of a resistor? (a) silver (b) grey (c) gold (d) None of these
Q155.If a cell of emf of 2 V sends a current of 0.5A though a resistor of 3 ohms then the internal resistance of the cell is (a) 4Ω (b) 3Ω (c) 2Ω (d) 1Ω
Q156.In superconductors (a) resistance is zero (b) current is large (c) no thermal loss (d) All the above
Q157.If the colour code of a resistor is red-red-black then its resistance would be (a) 44Ω (b) 11Ω (c) 22Ω (d) 66Ω
Q158.If the resistance of a coil is 2Ω at 0° C and $\alpha = 0.004/^{\circ}$ C then its resistance at 100° C is
(a) 1.4Ω (b) 5.6Ω (c) 2.8Ω (d) 4Ω Q159.The temperature about which the resistance of mercury becomes zero is?
(a) 0°C (b) -4.2 K (c) 0 K (d) 4.2 K
Q160.Charging current for a capacitor is 0.2 A, find the displacement current. (a) zero (b) 0.2 A (c) 0.4 A (d) 0.1 A
Q161.An electric bulb is marked as 100 W - 220 V. Then its resistance is
(a) 282Ω (b) 968Ω (c) 484Ω (d) 0Ω
Q162.Match the following: Column I (a) Current (i) Volt

	(b) Resistance (ii) farad (c) Potential difference (iii) mho (d) Capacitance (iv) ohm (V) ampere
	(a) a b c d (b) a b c d (c) a b c d (d) a b c d (i)(ii)(iv)(iii) (v)(i)(ii)(iv) (v)(iv)(i)(ii) (iii)(iv)(v)(iv)
	If two wires are of same length one of them is twice as thick as the other. Then the resistance of two wires are in the ratio (a) 1 : 2 (b) 1 : 4 (c) 1 : 8 (d) 1 : 16
Q164.	The current in the circuit is: (a) 4 A (b) 1 A (c) 2 A (d) 3 A
Q165.	In the above mentioned circuit the value of current I and voltage across $8\Omega\left(R_{2}\right)$ resistance is (a) 0.45 A, 18 V (b) 0.45 A, 36 V (c) 0.9 A, 72 V (d) 0.225 A, 9 V
	A cell of an EMF and internal resistance r is connected in series with an external resistance nr. The ratio of the terminal potential difference will be (a) $\frac{1}{n+1}$ (b) $\frac{1}{n}$ (c) $\frac{n+1}{n}$ (d) $\frac{n}{n+1}$
	An electric source will supply a constant current into the load resistor if its internal resistance would be (a) nonzero (b) infinite (c) zero (d) equal to load resistance
Q168.	Resistance of a metal wire of length 10 cm is 2Ω . If the wire is stretched uniformly to 50 cm the resistance is (a) 10Ω (b) 50Ω (c) 5Ω (d) 25Ω
	. The equivalent emf $\varepsilon_{\rm cq}$ and the equivalent internal resistance of the following circuit are

(a) 9 V and 3Ω (b) 3 V and 0.33Ω (c) 6 V and 0.3Ω (d) 1 V and 3Ω

Q170. According to Joule's law of heating, heat is given by

(a) H = VIt (b) $H = I^2 Rt$ (c) both a & b (d) None of the above

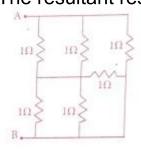
Q171.RMS voltage and frequency of $v = 230 \sin (314 t)$ A.C. source.

(a) 162.6V, 50Hz (b) 230V, 50Hz (c) 230V, 60Hz (d) 162.6V, 25Hz

Q172.Resistance of resistor having colour code Yellow - Green - Red - Gold.

(a) $(4700 \pm 5\%)\Omega$ (b) $(4500 \pm 5\%)\Omega$ (c) $(4700 \pm 10\%)\Omega$ (d) $(4500 \pm 10\%)\Omega$

Q173.Dimension of Resistance is

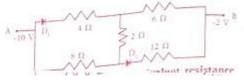

Dimension of Resistance is ____. (a) ML² T⁻³ A⁻² (b) ML² T⁻¹ A⁻¹ (c) ML² T⁻²A⁻³ (d) ML² T⁻¹A⁻²

Q174.Kirchoff's I and II laws are based on conservation of

(a) charge and energy (b) energy and charge (c) energy and voltage

(d) energy and current

Q175. The resistors each of resistance 1Ω is connected as shown in the figure. The resultant resistance between A and B is

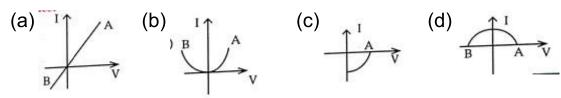


(a) $\frac{11}{5}\Omega$ (b) $\frac{5}{11}\Omega$ (c) $\frac{6}{5}\Omega$ (d) $\frac{6}{5}\Omega$

Q176. The potential difference between the points A and B in the given figure IS

(a) 3V (b) +3V (c) +6V (d) +9V

Q177.In the above circuit, the equivalent resistance between A and B is


(a) $\frac{20}{3}\Omega$ (b) 10Ω (c) 16Ω (d) 20Ω

Q178.As the temperature increases, the electrical resistance

(a) Increases for both conductors and semiconductors

(b) Decreases for both conductors and semiconductors

- (c) Increases for conductors but decreases for semiconductors
- (d) Decreases for conductors but increases for semiconductors
- Q179.Which one of the following I V graph represents the action of semiconductor device?

Q180.If a current of 7.5 A is maintained in a wire for 45 s then the charge flowing through the wire is :

(a) 6 C (b) 365.5 C (c) 3 C (d) 337.5 C

- Q181.For the fuse wire, which of the following characteristic is immaterial?

 (a) Radius (b) Resistivity (c) Length (d) None of these
- Q182. The resistance of a uniform wire of length I and cross-sectional area A is R. The resistance of wire of the same material having length 2I and cross sectional area 2A is:

(a) R (b) 2R (c) R/2 (d) R/4

2 Marks $117 \times 2 = 234$

Q183.Compute the current in the wire if a charge of 120 C is flowing through a copper wire in 1 minute.

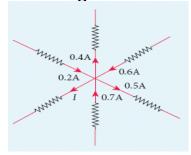
Q184. Why current is a scalar?

Q185.Distinguish between drift velocity and mobility.

Q186.State microscopic form of Ohm's law.

Q187.State macroscopic form of Ohm's law.

Q188. What are ohmic and non ohmic devices?


Q189.Define electrical resistivity.

Q190.Define temperature coefficient of resistance.

Q191.Write a short note on superconductors?

Q192.What is electric power and electric energy?

- Q193.Define current density.
- Q194.If an electric field of magnitude 570 N C⁻¹, is applied in the copper wire, find the acceleration experienced by the electron.
- Q195.A copper wire of cross-sectional area 0.5 mm² carries a current of 0.2 A. If the free electron density of copper is 8.4 x 10²⁸ m⁻³ then compute the drift velocity of free electrons.
- Q196.Determine the number of electrons flowing per second through a conductor, when a current of 32 A flows through it.
- Q197.A potential difference across 24 Ω resistor is 12 V. What is the current through the resistor?
- Q198.If the resistance of coil is 3 Ω at 20°C and α = 0.004/°C then determine its resistance at 100°C.
- Q199.Resistance of a material at 20°C and 40°C are 45 Ω and 85 Ω respectively. Find its temperature coefficient of resistivity.
- Q200.A battery has an emf of 12 V and connected to a resistor of 3 Ω . The current in the circuit is 3.93 A. Calculate
 - (a) terminal voltage and the internal resistance of the battery
 - (b) power delivered by the battery and power delivered to the resistor
- Q201. For the given circuit find the value of I.

- Q202.In a meter bridge experiment with a standard resistance of 15 Ω in the right gap, the ratio of balancing length is 3:2. Find the value of the other resistance.
- Q203.In a meter bridge experiment, the value of resistance in the resistance box connected in the right gap is 10 Ω . The balancing length is $I_1 = 55$ cm. Find the value of unknown resistance.
- Q204. Find the heat energy produced in a resistance of 10 Ω when 5 A current flows through it for 5 minutes.
- Q205. Derive the expression for power P=VI in electrical circuit.

Q206.Write down the various forms of expression for power in electrical circuit.

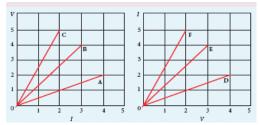
Q207.State Kirchhoff 's current rule.

Q208. State Kirchhoff 's voltage rule.

Q209. State the principle of potentiometer.

Q210.What do you mean by internal resistance of a cell?

Q211.State Joule's law of heating.


Q212.What is Seebeck effect?

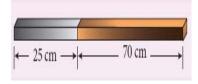
Q213.What is Thomson effect?

Q214.What is Peltier effect?

Q215. State the applications of Seebeck effect.

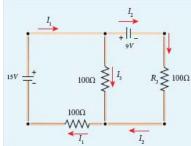
Q216. The following graphs represent the current versus voltage and voltage versus current for the six conductors A, B, C, D, E, and F. Which conductor has least resistance and which has maximum resistance?

Q217.Lightning is very good example of natural current. In typical lightning, there is 10^9 J energy transfer across the potential difference of 5 x 10^7 V during a time interval of 0.2 s.

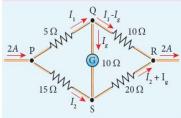

Using this information, estimate the following quantities.

(a) total amount of charge transferred between cloud and ground

(b) the current in the lightning bolt


(c) the power delivered in 0.2 s.

- Q218.A copper wire of 10^{-6} m² area of cross section, carries a current of 2 A. If the number of free electrons per cubic meter in the wire is 8×10^{28} , Calculate the current density and average drift velocity of electrons.
- Q219. The resistance of a nichrome wire at 20° C is 10Ω . If its temperature coefficient of resistance is 0.004° C, find its resistance of the wire at boiling point of water. Comment on the result.
- Q220. The rod given in the figure is made up of two different materials.



Both have square cross sections of 3 mm side. The resistivity of the first material is 4 x 10^{-3} Ω m and that of second material has resistivity of 5 x 10^{-3} Ω m. What is the resistance of rod between its ends?

- Q221.An electronics hobbyist is building a radio which requires 150 Ω in her circuit. But she has only 220 Ω , 79 Ω and 92 Ω resistors available. How can she connect the available resistors to get desired value of resistance?
- Q222.A cell supplies a current of 0.9 A through a 2 Ω resistor and a current of 0.3 A through a 7 Ω resistor. Calculate the internal resistance of the cell.
- Q223. Calculate the currents in the following circuit.

- Q224.A potentiometer wire has a length of 4 m and resistance of 20 Ω . It is connected in series with resistance of 2980 Ω and a cell of emf 4 V. Calculate the potential gradient along the wire.
- Q225.Determine the current flowing through the galvanometer (G) as shown in the figure.

- Q226.Two cells each of 5V are connected in series with a 8 Ω resistor and three parallel resistors of 4 Ω , 6 Ω , and 12 Ω . Draw a circuit diagram for the above arrangement. Calculate
 - (i) the current drawn from the cells
 - (ii) current through each resistor
- Q227.Four bulbs P, Q, R, S are connected in a circuit of unknown arrangement. When each bulb is removed one at a time and replaced, the following behavior is observed.

```
P Q R S
P removed * on on on
Q removed on * on off
R removed off off * off
S removed on off on *
```

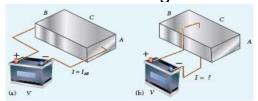
Draw the circuit diagram for these bulbs.

- Q228.In a potentiometer arrangement, a cell of emf 1.25 V gives a balance point at 35 cm length of the wire. If the cell is replaced by another cell and the balance point shifts to 63 cm, what is the emf of the second cell?
- Q229. Define current.
- Q230.Define instantaneous current.
- Q231.Define Ampere.
- Q232. Define mean free time τ .
- Q233. Why are household appliances connected in parallel?
- Q234. What is the function of Electric fuses?
- Q235.What are free electrons?
- Q236.What is conductor?
- Q237. What is meant by conventional current?
- Q238.Define resistance.
- Q239.Distinguish between ohmic & non-ohmic device.
- Q240. What is the effective resistance of resistors connected in series?

Q241. The resistivity of materials depends upon what parameters? Q242.Define the term electric power and circuit its SI unit. Q243. What does the voltage rating refers? What is use? Q244. Define electric energy state its commercial units. Q245. What is an internal resistance of cell? Q246. What do you mean by a series combination of cells? Q247. What do you mean by parallel combination of cells? Q248. How is sign convention followed while applying Kirchhoff's first rule? Q249. Explain sign convention for applying Kirchhoff's second rule. Q250. What do you mean by end resistance? How can it be rectified? Q251. What is meant by Heating effect of electric current? Q252.What is thermoelectric effect? Q253.Discuss some appliances of Joule's heating effect. Name few electric heating devices & state on what principle do they work. Q254. Why nickel is used as heating element? Q255.What is electric fuse? Q256. What is the disadvantage of electric fuse? Q257. What is the use of electric furnace? Q258. How heating effect is used in electrical lamps? Name other lamps which use the heating effected. Q259.What is seeback effect? Q260.What is (i) thermoelectric current?

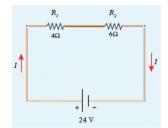
(ii) thermocouple?

- Q261.Define draft velocity and write its relationship with the current flowing through it.
- Q262.Draw I V graph for a conductor. What does the slope represent?
- Q263. The current-voltage graphs for a given metallic at two different temperatures T_1 & T_2 are shown in figure. The temperature. T_2 is greater than temperature T_1 . State whether statement is true or false. Given reason.
- Q264. Why the resistance of the conductor increases with rise in temperature.
- Q265.What happens to the drift velocity of electron and to the resistance if length of conductor and to the resistance if length of conductor unchanged?
- Q266. How does the conductivity of a semiconductor change with rise in temperature? Explain.
- Q267.Draw V I graph for ohmic & non -ohmic materials. Give example.
- Q268. How does a thermistor differ from ordinary resistor?
- Q269. Mention are limitation of carbon resistors.
- Q270.Show on graph. the variation of resistivity with for a typical semiconductor. What is the order resistivity of an insulator? Conductor and semiconductor.
- Q271.Two wires A & B are of the same metal of the same length have area of the cross-section in the ratio of 2: 1. If the same potential difference is applied across each wire. What will be the retro of the circuit flowing in A & B?
- Q272. Why connecting wires are made of copper?
- Q273. Show variation of resistivity of
 - (i) conductor (i.e. copper)
 - (ii) semiconductor
 - (ii) with temperature in a graph. Give reason.
- Q274.Why are resistors connected in series and in parallel
 - (i) To increase the resistor of the circuit
 - (ii) The resistors are connected in series.

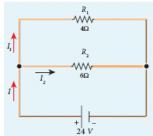

- Q275.Explain with the help of graph the variation of conductivity with temperate for a metallic conductor?
- Q276.When resistors are connected in series the effective resistance is increased. Why?
- Q277.When resistors are connected in parallel the effective resistance is reduced. Why?
- Q278.Define electrical conductivity of a conductor. On what factor does it depend?
- Q279. Why is terminal voltage of a cell less than its emf?
- Q280.Plot a graph showing the variation of circuit I various resistance R connected to a cell of emf E and internal resistance r.
- Q281.Of which material is a potential wire normally made and why?
- Q282. Why are connecting resistors in a metre bridge made of thick copper strips?
- Q283. Nichrome and copper wire of same length and same radius are connected in series circuit I is passed through them. Which wire gets heated up more? Give reason.
- Q284.Two 120 V light bulbs, one 25W and other of 100 W were connected in series across a 220 V line. One bulb burnt out instantaneously. which one was burnt and Why?
- Q285.What are conductors?
- Q286.What are positive ions?
- Q287. The positive ions will not give rise to current. Why?
- Q288.Mention the relation between current density and drift velocity. (or) Obtain a relation between current and drift velocity
- Q289. State the relation between resistivity, conductivity and relaxation time of free electrons.
- Q290.What are carbon resistors?

- Q291.Define resistance of a conductor.
- Q292. What is the significance of a superconductor?
- Q293. Which metal is preferred to be used in (i) Electric heater and (ii) Electrical lamp.
- Q294. Which material is used for the meter bridge wire and why?
- Q295.Under What condition, is the heat produced in an electric circuit, (i) directly proportional and (ii) inversely proportional to the resistance of, the circuit?
- Q296.Why is potentiometer preferred over a voltmeter for comparison of emfs of cells?
- Q297. What is meant by transition temperature?
- Q298. Obtain an expression for electrical conductor.

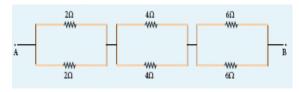
Q299.What is Electricity?

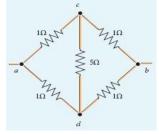

3 Marks $67 \times 3 = 201$

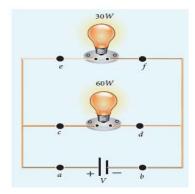
- Q300. The resistance of a wire is 20 Ω . What will be new resistance, if it is stretched uniformly 8 times its original length?
- Q301.Consider a rectangular block of metal of height A, width B and length C as shown in the figure.



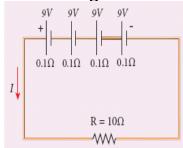
If a potential difference of V is applied between the two faces A and B of the block (figure (a)), the current I_{AB} is observed. Find the current that flows if the same potential difference V is applied between the two faces B and C of the block (figure (b)). Give your answers in terms of I_{AB} .


Q302.Calculate the equivalent resistance for the circuit which is connected to 24 V battery and also find the potential difference across each resistors in the circuit.


Q303.Calculate the equivalent resistance in the following circuit and also find the values of current I, I₁ and I₂ in the given circuit.

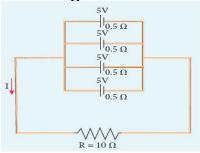

- Q304.Two resistors when connected in series and parallel, their equivalent resistances are 15 Ω and $\frac{56}{15}\Omega$ respectively. Find the individual resistances.
- Q305.Calculate the equivalent resistance between A and B in the given circuit.

Q306. Five resistors are connected in the configuration as shown in the figure. Calculate the equivalent resistance between the points a and b.



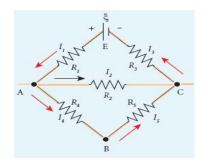
- Q307.A battery of voltage V is connected to 30 W bulb and 60 W bulb as shown in the figure.
 - (a) Identify brightest bulb
 - (b) which bulb has greater resistance?
 - (c) Suppose the two bulbs are connected in series, which bulb will glow brighter?

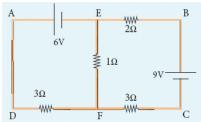
Q308.Two electric bulbs marked 20 W – 220 V and 100 W – 220 V are connected in series to 440 V supply. Which bulb will get fused?


Q309. From the given circuit,

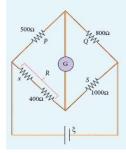
Find

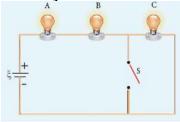
- i) Equivalent emf of the combination
- ii) Equivalent internal resistance
- iii) Total current
- iv) Potential difference across external resistance
- v) Potential difference across each cell


Q310.For the given circuit


Find

- i) Equivalent emf
- ii) Equivalent internal resistance
- iii) Total current (I)
- iv) Potential diffèrence across each cell
- v) Current from each cell


Q311. The following figure shows a complex network of conductors which can be divided into two closed loops like EACE and ABCA. Apply Kirchoff's voltage rule(KVR)


Q312. Calculate the current that flows in the 1 Ω resistor in the following circuit.

- Q313.In a Wheatstone's bridge P = 100 Ω , Q = 1000 Ω and R = 40 Ω . If the galvanometer shows zero deflection, determine the value of S.
- Q314.What is the value of x when the Wheatstone's network is balanced? $P = 500 \Omega$, $Q = 800 \Omega$, R = x + 400, $S = 1000 \Omega$

- Q315.An electric heater of resistance 10 Ω connected to 220 V power supply is immersed in the water of 1 kg. How long the electrical heater has to be switched on to increase its temperature from 30°C to 60°C. (Specific heat capacity of water is s = 4200 J kg⁻¹ K⁻¹)
- Q316.State and explain Kirchhoff's rules
- Q317.Three identical lamps each having a resistance R are connected to the battery of emf ϵ as shown in the figure.

Suddenly the switch S is closed.

- (a) Calculate the current in the circuit when S is open and closed
- (b) What happens to the intensities of the bulbs A, B, and C.
- (c) Calculate the voltage across the three bulbs when S is open and

- closed
- (d) Calculate the power delivered to the circuit when S is opened and closed
- (e) Does the power delivered to the circuit decrease, increase or remain same?
- Q318. What are carbon resistors? What does the colour indicates?
- Q319.Derive an expression of drift velocity and write the relation between drift velocity and mobility.
- Q320. How does one can understand the temperature dependence of resistivity of a conductor?
- Q321.(a) Distinguish between electric cells and batteries.
 - (b) Explain its function.
- Q322. What is meant by electromotive force?
- Q323. Derive a relation between internal resisance and emf of a cell.
- Q324.In a circuit containing internal resistance r. Find the power delivered.
- Q325.Find the expression for the equivalent emf & internal resistance of the series combination of cells.
- Q326.State Joule's law.
- Q327.Explain Peltier effect.
- Q328. What is superconductivity?
- Q329.Draw the variation between voltage and current for
 - (a) an Ohmic conductor and
 - (b) a Non Ohmic conductor
- Q330.Repairing the electrical connection with the wet skin is always dangerous. Give reason.
- Q331.What do you know from coloured rings found on the resistor?
- Q332.Distinguish electromotive force from potential difference.

Q333.Deduce an expression for the power delivered by a battery with an internal resistance r.

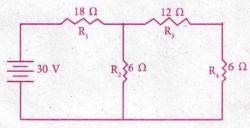
Q334. How is sign convention followed while applying Kirchhoff's second rule.

Q335. What is a galvanometer? State its application.

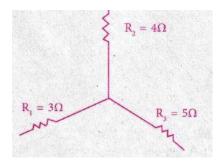
Q336. What is the application of potentiometer?

Q337.What is meant by Joule's heating effect?

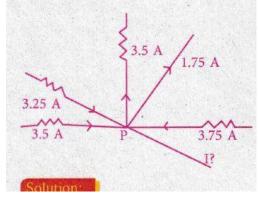
Q338. Which material is used in electric heaters? Why?

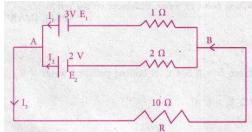

Q339. What is a fuse wire? What is its function?

Q340. Mention the devices that utilize the heating effect of current.


Q341.What is meant by thermoelectric effect?

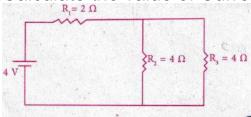
- Q342.State the metals where (i) positive and (ii) negative. Thomson effects are observed.
- Q343.A copper wire consists of 10^{28} free electrons per mm³ and its current density is of the order of 1 A/mm². Calculate the drift velocity of the electrons.
- Q344.Two aluminum wire of same length have resistance 5Ω and 10Ω and 10 respectively Find the ratio of radii of two wires.
- Q345.Determine the effective resistance of the given circuit between points A and B.


Q346. Find the voltage drop across 18Ω resistor in the given network.

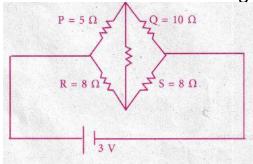


Q347. Find the effective resistance of the given circuit.

Q348. Find the value of current in the following function.



Q349.


Calculate the value of the currents I_1 , I_2 and I_3 in the above mentioned electric circuit.

Q350. Calculate the value of Current in the following circuit

- Q351. The internal resistance of battery of emf 10V is 3 ohm. If a current of 0.5A is following through the battery then what is its terminal voltage when the circuit is closed?
- Q352.A series battery having six lead accumulators each of emf 2.2V and internal resistance 0.5Ω is charged by a 100V dc supply. Calculate
 - (a) The series resistance should be used in the charging circuit in order to limit the current its 7.8A?
 - (b) Power supply by the dc source
 - (c) The power dissipated

- Q353.It is required to send a current of 10 A through h resistance R = 3Ω . Calculate the number of cells of required so that the emf of each cell is 10V and its internal resistance is 1Ω .
- Q354. Determine the additional resistance that has to be connected with resistor of 32Ω in the following Wheatstone's bridge circuit in order to balance Wheatstone's bridge.

- Q355.Two metal wires having identical dimensions are connected in series. If σ_1 and σ_2 are the conductances of the wires respectively then calculate the effective conductivity of the combination.
- Q356.A wire of resistance 10Ω is stretched uniformly to thrice its original length. Calculate the resistance of the stretched wire.
- Q357.A copper wire of 10^{-6} m² area of cross section, carries a current of 2 A. If the number of electrons per cubic meter is 8 x 10^{28} , calculate the current density.
- Q358. Find the heat energy produced in a resistance of 10Ω when 5A current flows through it for 5 minutes.
- Q359. State seebeck effect and give two applications.
- Q360.State Kirchhoff's current rule and voltage rule.
- Q361.State Kirchhoff's current rule and voltage rule
- Q362.32 cells, each of emf 3 V are connected in Scrics and kept in a box. If externally the combination shows an emf of 84 V, then how many number of cells reversed in the combination?+
- Q363.Explain the equivalent resistance of a series network.
- Q364.Explain the equivalent resistance of a parallel resistor network.
- Q365.State and explain Kirchhoff 's II rule

5 Marks $47 \times 5 = 235$

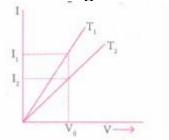
- Q367.Describe the microscopic model of current and obtain general form of Ohm's law.
- Q368. Obtain the macroscopic form of Ohm's law from its microscopic form and discuss its limitation.
- Q369.Explain the equivalent resistance of a series and parallel resistor network.
- Q370.Explain the determination of the internal resistance of a cell using voltmeter.
- Q371. Obtain the condition for bridge balance in Wheatstone's bridge.
- Q372. Explain the determination of unknown resistance using meter bridge.
- Q373. How the emf of two cells are compared using potentiometer?
- Q374. The current through an element is shown in the figure. Determine the total charge that pass through the element at a) t = 0 s, b) t = 2 s, c) t = 5s

- Q375. Calculate the effect internal resistance in series and parallel.
- Q376.Explain the variation of resistivity of conductor and semiconductor with change in temperature.
- Q377. What is potentiometer? Give its constant and 5 principles.
- Q378.Explain what is
 - (i) Thomson effect,
 - (ii) Positive Thomson effect,
 - (iii) Negative effect.
- Q379.A carbon resistor has coloured strips. What is its resistors?

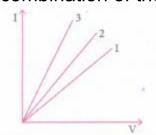
- Q380. How will you represent a resistor of 3700 Ω ± 10 by colour code?
- Q381.Two students A & B were asked to pick a resistor of 25 k from a collection of carbon resistors. A picked a resistors with bands of colours of red, green, orange, white. B picked a resistor with bands of colours: black, green, red who picked the correct resistor?
- Q382.A conductor of length I is connected to d.c. source of potential V. If the length of the conductor is doubled by treating it, keeping V constant, explain how do the following factors vary in the conductor

(i) Drift velocity.

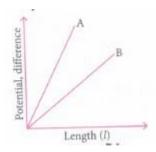
(ii) Resistor

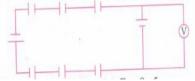

(iii) Resistivity.

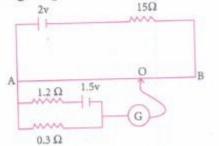
Q383.Write mathematical relation between

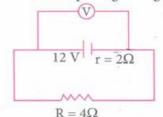

(i) mobility & drift velocity of charge carriers in a conductor

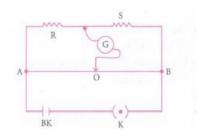
(ii) mobility & relaxation time (or) mean free time.

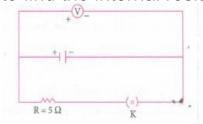

Q384.I - V graph for a metallic wire at two different temperatures T₁ & T₂ as shown in figure. Which of the two temperature is lower. Why?


- Q385.Using the concept of drift velocity of charge carries in a conductor, deduce the relationship between circuit density and resistivity of the conductor?
- Q386. The V I graphs of two resistors and their series combination are shown in the figure. Which one of these graph represents the series combination of the other two? Given reason.

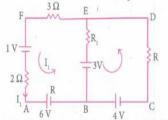

Q387. The variation of potential difference V with length I in the case of two potentiometer A & B is shown. Which of these two will you prefer for finding the emf of a cell or for comparing emfs of two primary cells?


- Q388.Two metallic wires P_1 & P_2 of the same material & same length but different cross sectional areas A_1 & A_2 are joined together & connected to a source of emf. Find the ratio of the drift velocities of free electrons in the two wires when they are connected
 - (i) in series &
 - (ii) in parallel.
- Q389. The lengths & radii of three wires of the same metal in the radio 2: 3: 4 & 3: 4: 5 respectively. They are joined in parallel & included in a circuit having a 5 A current. Find current in each wire.
- Q390.In the circuit shown in figure each battery is of 5V and has an internal resistor of 0.2Ω . What will be the reading of an ideal voltmeter connected across a battery?

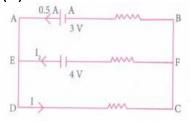

- Q391.In the following potentiometer circuit, AB is a uniform wire of length 1m & resistor 10Ω .
 - Calculate the potential gradient along the wire & balancing length to.


Q392.Calculate the voltmeter reading and the amount of current passing through a circuit.

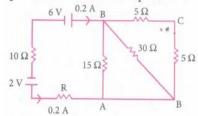
Q393.In a meter bridge, the balancing length is found to be 40 cm from end A. If the resistance of 10 Ω is connected in series with R, balancing length is obtained 60 em from A. calculate the value R & S.



- Q394.An aluminium wire of diameter 0.24 cm is connected in series to a copper wire of diameter 0.16 cm. The wires carry an electric current of 10 A. Determine the current density in aluminium wire.
- Q395.A potential difference of 3 V is applied across a conductor through which the 5 A of current is flowing. Determine the resistance of the conductor.
- Q396.A negligible small current is passed through a wire of length 15 m and uniform cross-section 6 x 10^{-1} m and its resistance is measured to be 5 Ω . What is the resistivity of the material at the temperature of the experiment?
- Q397.A silver wire has a resistance of 2.1 Ω 27.5°C and a resistance of 2.70 at 100°C. Determine the temperature coefficient of resistance of the silver.
- Q398.Estimate the average different speed of conduction electrons in a copper wire of crosssectional area 1.0 x 10⁻⁷ m² carrying a current of 1.5 A. Assume the density of conduction electrons to be 9 x 10²⁸ m⁻³.
- Q399. How will you represent a resistance of 3700 Ω ± 10% by colour code?
- Q400.A cell of emf E and internal resistance 'r' gives a current of 0.5 A with an external resistance of 12 Ω and a current of 0.25 A with an external resistance of 25. Calculate
 - (i) internal resistance of the cell
 - (ii) emf of the cell.
- Q401. The reading on a high resistance volt. When a cell is connected across it is 2.2 V when the terminal of the cell is connected to a resistance of 5 as shown in the figure given below, the voltmeter reading drops to 1.8 V to find the internal resistance of the cell.



Q402.Use Kirchhoff's laws (rules) to determine the potential difference between points A and D when no current flows in the arm BE of the


electric network shown in the figure below.

- Q403.In a wheat stone bridge circuit P = 7, Q = 8, R = 12 & s = 7. Find the additional resistance to be used in series with S, so that the bridge is balanced.
- Q404. Using Kirchhoff's laws in the given circuit determine
 - (i) the voltage drop across the unknown resistor 'R'
 - (ii) the current 'I' in the ohm EF.

Q405. Calculate the value of the resistance 'R' in the circuit shown in the figure so that the current in the circuit is 0.2 A. What would be the potential difference between points A and B?

- Q406. Derive an expression for the current flowing in a circuit in which cells are connected in series.
- Q407. Obtain an expression for the strength of current without flowing through a circuit in which cells are connected in parallel.
- Q408.Explain the method of measuring internal resistance of a cell using potentiometer.
- Q409.(a) Explain Seebeck effect with a charging
 - (b) Explain the applications of Seebeck effect
- Q410.Describe Peltier effect.
- Q411.Explain Thomson effect.

- Q412.A parallel combination of two cells of emf's E_1 and E_2 internal resistances r_1 and r_2 is used to supply current to a load of resistance. Write the expression for the current through the load in terms of E_1 , E_2 , r_1 and r_2
- Q413.When two resistors connected in series and parallel their equivalent resistances are 15 Ω and 56/15 Ω respectively. Find the two resistances.

Match the following

 $8 \times 1 = 8$

Q414.Electric Heaters

Q415.Electric Fuses

Q416.Electric furnace

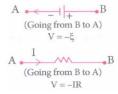
Q417.Electrical Lamp

Q418.Current

Q419.Resistance

Q420.Power

Q421.Energy


Assertion and reason

 $3 \times 2 = 6$

Q422. Assertion: Kirchoff's voltage rule can be expressed as

$$\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \dots + \varepsilon_n = I_1 R_1 + I_2 R_2 + \dots + I_n R_n$$

Reason: For the given diagrams

Codes:

- (a) Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (b) Assertion and Reason are true but Reason is the false explanation of the Assertion.
- (c) Assertion is true but Reason is False.
- (d) Assertion is false but Reason is True

Q423. Assertion: When the car engine is started with headlights turned on, they sometimes become bright

Reason: A galvanometer is extensively useful to compare the potential difference between various parts of the circuit

Codes:

- (a) Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (b) Assertion and Reason are true but Reason is the false explanation of the Assertion.
- (c) Assertion is true but Reason is False.
- (d) Assertion is false but Reason is True
- Q424. **Assertion:** In a simple battery circuit, the point of the lowest potential is positive terminal of the battery.

Reason: The current flows the point of higher potential as it does in such a circuit from the negative to the positive potential.

Codes:

- (a) Both assertion and reason are true
- (b) Both assertion and reason are false
- (c) Assertion is true, reason is false
- (d) Assertion is false, reason is true

Odd one out $2 \times 2 = 4$

- Q425.(a) Copper
 - (b) Iron
 - (c) Manganin
 - (d) Aluminum
- Q426.(a) Seebeck effect
 - (b) Joule's effect
 - (c) Thomson effect
 - (d) Peltier effect

Find out the wrong pair

 $1 \times 2 = 2$

Q427.a. Kirchhoff's I law-conservation of energy

b. Ohm's law -resistance

c. Kirchhoff's Illaw -voltage law

d. Joule's law heating effect current

Which one is incorrect pair?

Choose the correct pair

 $1 \times 1 = 1$

Q428.a. Tolerance of gold -10%

b. Potentio meter wire-Constantine

c. Filament bulb - Nichro

d. Positive electrode -cathode

Choose the Correct or Incorrect Statement

 $2 \times 1 = 2$

- Q429.(I) Meter bridge is another from of wheatstone's bridge.
 - (IÍ) Seebeck effect is used in thermoelectric generators. Which one is correct statement?
 - (a) I only
 - (b) II only
 - (c) both are correct
 - (d) None
- Q430.(I) The total resistance in the circuit of cells in series is nr + R
 - (IÍ) The internal resistance of a cell is

$$r = \frac{(V - \xi)R}{V}$$

Which one is incorrect statement?

- (a) I only
- (c) both are correct
- (b) II only
- (d) None