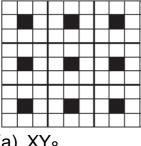
RAVI MATHS TUITION CENTER, NEAR VILLIVAKKAM RLY STATION, CHENNAI – 82. WHATSAPP - 8056206308

Solid State


12th Standard

			С	hemistry					
Exam Time	: 02:30:00	Hrs		•			Tota		ks : 100 k 1 = 25
molecula 2) An ionic centre of	llent and r crystals compound	(b) co AxBy cry	valent crys stallizes ir	stals i fcc type	(c) both concepts (c) both con	ıcture w	crysta ith B io	ls ns at t	he
is (a) AB 3) The ratio (a) 1:1 4) Solid CO	of close pa	acked ato (b) 1:2	ms to tetra	. , -		packir			
(a) Cova 5) Assertion Reason: (a) Both reason a	lent solid i : monoclii for a mono assertion a re true and rect explar	(b) m nic sulphu oclinic sys and I reason	our is an exactem, $a \neq 0$ (b) Both are true b	ample of $b eq c$ and assertior out reaso uplanatio	molecular monoclinic d $lpha=\gamma=0$ and reason is not the n of	crystal $90^0, eta$ $_{ar{ extit{7}}}$ n (c) Asse	system $ eq 90^0 $ rtion is	(d) Bo assert and re	oth ion ason
(a) 4 and 7) The num in bcc pa	e (NEET) d 2 ber of unit ttern is (NA	(b) 6 a cells in 8 A is the A	nd 6 gm of an o	(c) element i umber)	8 and 4 X(atomic r	(mass 40	d) 4 an)) which	d 8 i crysta	allizes
(a) 6.023	3 X 10 ²³	(b) 6.02	3 X 10 ²²	(c) 60.	23 X 10 ²³	(d) ($\frac{6.023}{8 \times}$	$rac{ imes 10^{23}}{ imes 40}$	-)
8) The num (a) 8	ber of carb	on atoms (b) 6	per unit c	ell of dia (c)	mond is 1	(d) 4		
9) In a solid	atom M o	ccupies c	cp lattice a	and $\left(rac{1}{3} ight)$	of tetrahe	dral voi	ds are o	occupi	ed by
atom N. f (a) MN 10) The con form of F (a) 16.05 11) The ioni	nposition o e ³⁺ ?	(b) M ₃ N f a sampl	e of wurtzi	(c) MI ite is Fe _C	N ₃ _{00.931} .00 wh	at % of	Iron pro		
number of (a) 8 12) CsCl ha	of each ion	(b) 2			6 enath is 400		d) 4 inter ato	omic d	istance
-, 0001 Ha		.gomont,	drift oc	Jago id	9 10 +00	۲۰۰۰, ۱۱۵	c. at	511110 U	.5.0.100

JOIN 10TH/12TH STATE BOARD PAID WHATSAPP GROUP TODAY WITH PDF ANSWERS. ONE TIME FEES RS.750 TILL FINAL BOARD EXAM. WHATSAPP - 8056206308

(a)	, 400pm	(b) 800pi	$(c) \sqrt{3} \times$	100 <i>pm</i>	(d)	$\left(rac{\sqrt{3}}{2} ight) imes 40$	0pm
	solid compo		s NaCl structure	e. if the ra		(- /	
(a)	$\left(\frac{100}{0.414}\right)$	(b)	$\left(\frac{0.732}{100}\right)$	(c) 100	X0.414	(d) $\left(\frac{0}{1}\right)$	$\frac{.414}{100}$
	-		lattice unit cell i		.,	(1) 000/	·
) 48% he radius of		23% 300pm, if it crys				
	$\frac{1}{2}$) talli200 ii i	1 4 1400 00	nitoroa oabio	iattioo, trio
	-	• • •	848.5pm	• •	-	• •	.5pm
			me occupied by				\
(a)	$\left(\frac{\pi}{4\sqrt{2}}\right)$	(1	$(5) \left(\frac{\pi}{6}\right)$	(c) $\left(\frac{\pi}{4}\right)$	[]	(d) $\left(\frac{\pi}{3\sqrt{2}}\right)$	\overline{s}
	•		Cl crystal is due		OL ()	e ce i	(/ 1) 11 6
			 reflection of line n on the surface 				
			length of the cu				
of	radii of sphe	res in thes	e systems will b	e respecti	vely	/ IN	
(a) /) 1 / 0	(b)	$\overline{1}_{\alpha}$. $\overline{2}_{\alpha}$. $\overline{2}_{\alpha}$	(C)	/ -	(d)	1
	$\frac{1}{2}a;\frac{\sqrt{3}}{2}a;\frac{\sqrt{3}}{2}$	$\left(\frac{\sqrt{2}}{2}a\right)^{-\left(\sqrt{2}a\right)}$	$\overline{1a}:\sqrt{3a}:\sqrt{2a}$	$\left(\frac{1}{2}a:\right)$	$\frac{\sqrt{3}}{4}a:{2}$	$\left(\frac{1}{\sqrt{2}}a\right) \frac{1}{2}a$:	$\sqrt{3}a:\frac{1}{\sqrt{2}}a$
		•	side of the cube,		nce betwe	en the body	centered
ato	om and one	corner aton	n in the cube wi	ll be	- \	/	-
(a)	$\left(\frac{2}{\sqrt{3}}\right)a$	(b)	$\left(\frac{4}{\sqrt{3}}\right)a$	(c) $\left(\frac{}{}\right)$	$\left(\frac{\sqrt{3}}{4}\right)a$	(d) $\left(\frac{\sqrt{2}}{2}\right)$	$\left(\frac{3}{2}\right)a$
			ucture with near	est neighb	oor distan	ce 4.52 A0 . i	its atomic
We	eight is 39. it N 915 kg m ⁻³	s density w	ill be 2142 kg m ⁻³	(c) 45°	2 ka m ⁻³	(4) 300	ı ka m ⁻³
			tal is observed \		z kg iii	(d) 000	kg III
(a)) unequal กเ	umber of	(b) equal numb	er of (
			anions and aniomissing from the				
1111	ssing nom u	ie iattice	missing nom ur		site		its iattice
22) T	he cation lea	aves its nor	mal position in t	he crystal	and mov	es to some ir	nterstitial
•			crystal is knowr			4 . 1 . 1 . 1	. .
	-	` '	F center (c) Fre el defect, densit		` '		
-			t cation and ani	•	•		
(a)	Both asse	rtion and	(b) Both as	sertion an	nd reason	(c)	` '
			on isare true but				
	sertion		correct expl assertion	anauon o	ı		and reason are false
			RD PAID WHA	TSAPP GE	ROUP TO		

- 24) The crystal with a metal deficiency defect is
 - (a) NaCl
- (b) FeO
- (c) ZnO
- (d) KCI
- 25) A two dimensional solid pattern formed by two different atoms X and Y is shown below. The black and white squares represent atoms X and Y respectively. the simplest formula for the compound based on the unit cell from the pattern is

- (a) XY_8
- (b) X_4Y_9
- (c) XY_2
- (d) XY_4

 $8 \times 2 = 16$

- 26) Define unit cell
- 27) Give any three characteristics of ionic crystals.
- 28) Differentiate crystalline solids and amorphous solids.
- 29) classify the following solids
 - a. P4
 - b. Brass
 - c. diamond
 - d. NaCl
 - e. lodine
- 30) Explain briefly seven types of unit cell
- 31) Distinguish between hexagonal close packing and cubic close packing.
- 32) Distinguish tetrahedral and octahedral voids.
- 33) What are point defects?

 $8 \times 3 = 24$

- 34) Explain Schottky defect.
- 35) Write short note on metal excess and metal deficiency defect with an example
- 36) Calculate the number of atoms in a fcc unit cell
- 37) Explain AAAA and ABABA and ABCABC type of three dimensional packing with the help of neat diagram.
- 38) Why ionic crystals are hard and brittle?
- 39) Calculate the percentage efficiency of packing in case of body centered cubic crystal.
- 40) What is the two dimensional coordination number of a molecule in square close packed layer?
- 41) Experiment shows that Nickel oxide has the formula Ni_{0.96}.O_{1.00} What fraction of Nickel exists as of Ni²⁺ and Ni³+ ions?

 $7 \times 5 = 35$

- 42) What is meant by the term "coordination number"? What is the coordination number of atoms in a bcc structure?
- 43) An element has bcc structure with a cell edge of 288 pm. the density of the element is 7.2 gcm⁻³. how many atoms are present in 208g of the element.
- 44) Aluminium crystallizes in a cubic close packed structure. Its metallic radius is 125pm.

calculate the edge length of unit cell.

JOIN 10TH/12TH STATE BOARD PAID WHATSAPP GROUP TODAY WITH PDF ANSWERS. ONE TIME FEES RS.750 TILL FINAL BOARD EXAM. WHATSAPP - 8056206308

- 45) if NaCl is doped with 10⁻² mol percentage of strontium chloride, what is the concentration of cation vacancy
- 46) Atoms X and Y form bcc crystalline structure. Atom X is present at the corners of the cube and Y is at the centre of the cube. What is the formula of the compound?
- 47) Sodium metal crystallizes in bcc structure with the edge length of the unit cell 4.3X10⁸.cm. calculate the radius of sodium atom.
- 48) Write a note on Frenkel defect.

JOIN 10TH & 12TH PAID WHATSAPP GROUP

DEC 1 2025 TO TILL FINAL 2026 MARCH EXAMUPLOAD DAILY ONE SUBJECT FULL TEST PAPER

ONE TIME FEES RS.750 ONLY

ALL TEST PAPERS WITH ANSWERS UPLOAD IN YOUR WHATSAPP

FREE USERS CHECK ALL SAME PAPERS UPLOAD IN MY WEBSITES. YOU CAN DOWNLOAD AND PRACTICE

RAVI TEST PAPERS & NOTES
WHATSAPP - 8056206308

CHECK FREE TEST PAPERS <u>www.ravitestpapers.com</u> & <u>www.ravitestpapers.ir</u>

TN 12TH STUDY MATERIALS & MODEL PAPERS

CHAPTERWISE M	ATERIALS	CHAPTERWISE SAMPLE PAPERS			
TAMIL	RS.350				
ENGLISH	RS.350				
MATHS	RS.350	150 TEST PAPERS	RS.350		
PHYSICS	RS.350	100 TEST PAPERS	RS.350		
CHEMISTRY	RS.350	104 TEST PAPERS	RS.350		
BIOLOGY	RS.350	123 TEST PAPERS	RS.350		
COMPUTER SCI	RS.350	88 TEST PAPERS	RS.350		
ACCOUNTS	RS.350	55 TEST PAPERS	RS.350		
COMMERCE	RS.350	63 TEST PAPERS	RS.350		
ECONOMICS	RS.350	60 TEST PAPERS	RS.350		
BUSINESS MATHS	RS.350	100 TEST PAPERS	RS.350		
COMPUTER APPLI	ICATION MCQ	S 2 3 5 MARKS QUS ANS AVAI	LABLE RS.250		
BUY ANY	4 SUBJE	CTS PDF COST R	S.1000		

CHECK FREE TEST PAPERS www.ravitestpapers.in
www.ravitestpapers.in
RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308
MINIMUM LEARNING MATERIALS COST RS.100 PER SUBJECT