
RAVI MATHS TUITION CENTER ,GKM COLONY, CHENNAI- 82. PH: 8056206308 12TH CHEMISTRY 1 MARK TEST 1

			12th Standard			
			Chemistry	Reg.No.:		
Ex	am Time: 00:50:00	Hrs			Total Marks: 50	
					$50 \times 1 = 50$	
1)	Bauxite has the cor	nposition				
	(a) Al_2O_3 (1)	b) Al ₂ O ₃ nH ₂ O	(c) $Fe_2O_3.2H_2O$	(d) None of	these	
2)	Roasting of sulphic	le ore gives the gas (A).(A) is a colourless gas. A	queous solution of (A) is acidic. The	
	gas (A) is					
	(a) CO ₂	(b) So ₃	(c) SO ₂	(d) H_2S		
3)	Which one of the fe	ollowing reaction rep	resents calcinations?			
	(a)	(b)		(c)	(d)
	$2Zn + O_2 \rightarrow 2ZnC$	$2ZnS + 3O_2 \rightarrow 2$	$2ZnS + 3O_2 \rightarrow 2ZnO_2 \rightarrow 2Z$	$ZnO + 2SO_2$ N	$MgCO_3 \rightarrow MgO + CO_2$	Botl
						(a)
						and
						(c)
4)	The metal oxide w	hich cannot be reduce	ed to metal by carbon is			
	(a) PbO	(b) AL_2O_3	(c) ZnO	(d) 1	Feo	
5)	Which of the metal	is extracted by Hall-	-Heroult process?			
	(a) Al	(b) Ni	(c) Cu	(d) Zn		
6)	An aqueous solution	on of borax is				
	(a) neutral	(b) acidic	(c) basic	(d) amphoteric		
7)	Boric acid is an aci	d because its molecu	le (NEET)			
	(a) contains		(c) combines with proton to	o form (d) accepts C	OH- from water	
	replaceable H+ ion		water molecule	releasing pro		
8)	Which among the f	following is not a bor	rane?			
	(a) B_2H_6	(b) B_3H_6		(d) none of these		
9)	Which of the follow	wing metals has the 1	argest abundance in the eart	h's crust?		
	(a) Aluminium	(b) calcit			sodium	
10) In diborane, the nu	imber of electrons th	at accounts for banana bond	s is		
	(a) six	(b) two	(c) four	(d) three		
11		lowing, NH3 is not t	ised?	. ,		
		Reagent for the an		for the analysis of III	(d) Tollen's	
		oup basic radical	group basic ra		reagent	
12) Which is true rega	rding nitrogen?			_	
			onisation enthalpy(c) d- or	bitals (d) ability	to form pπ-	
	element	than oxygen	available	pπ bonds w	rith itself	
13) An element belong	gs to group 15 and 3	rd period of the periodic tab			
	be	, , ,	1	•		
	(a) $1s^2 2s^2 2p^4$	(b) $1s^2 2s^2 2p^3$	(c) $1s^2 2s^2 2p^6 3s^2 3p^2$	(d) $1s^2 2s^2 2t^2$	$p^6 3s^2 3p^3$	
14	- · ·		aOH liberating a foul smelli		=	
		rings. A and B are re	-	5 5(=) spe	<i>j</i>	
	(a) P ₄ (red) and PH	•	-	H ₂ S (d) P ₄ (whi	te) and H ₂ S	
15		test, brown colour of		<u>/</u> ~ (a) 14(viii	,	
	(a) a mixture of No		•	(c) Ferrous nitrate	(d) Ferric nitra	
16			z = 30 is not becaus			
) 56(2 21) 15 a man	Bitton Cicinent Cut 2	ine (2 30) is not becaus			

	(b) in case of Sc, 3d or are partially filled but it	* *	(d) both Sc and Zn do to not exhibit variable
ions are colourless and form white compounds	these are completely fil		
-	= -		
17) Which of the following d l valence sub shell?	Slock element has half if	med pendiumate d sub shen as	s well as half filled
(a) Cr (b) Pd	(c) Pt	(d) none of these	
18) Among the transition meta	als of 3d series, the one t	hat has highest negative $\left(\frac{M^{2+}}{M}\right)$	e) standard electrode
potential is		()) (1). 7
		` '	d) Zn
19) Which one of the followin			
()	o) Fe ³⁺	(c) Ni^{2+}	d) Cr ³⁺
20) The magnetic moment of I		() 0.05D) (1) 2 2077 (
	(b) 2.80BM	` '	d) 3.90BM
21) The sum of primary valance			
` '	o) 6	` '	(d) 9
22) An excess of silver nitrate			
		ber of moles of AgCl precipit	
	(b) 0.002	(c) 0.01	(d) 0.2
23) A complex has a molecula		-	
with Barium chloride solut	ion and no precipitate is	obtained when it is treated wi	th silver nitrate solution.
•		one of the following correctly c) [M(H ₂ O) ₅ Cl]SO ₄ H ₂ O (d)	-
24) Oxidation state of Iron and			
		y(c) +3 and -1 respectively (c)	
	, .		
25) As per IUPAC guidelines,	the name of the complex	x [Co(en) ₂ (ONO)Cl]Cl is	
25) As per IUPAC guidelines, (a)	•	- ' '-'	(d)
(a)	(b)	x [Co(en) ₂ (ONO)Cl]Cl is (c) obis(ethane- chloridobis(etha	(d) ane- chloridobis(ethane-
(a)	(b) nitritocobalt(III) chlorid	(c) obis(ethane- chloridobis(etha	
(a) chlorobisethylenediamine	(b) nitritocobalt(III) chlorid 1,2-dian	(c) obis(ethane- chloridobis(etha	ane- chloridobis(ethane-
(a) chlorobisethylenediamine	(b) nitritocobalt(III) chlorid 1,2-dian	obis(ethane-chloridobis(ethanenine)nitro 1,2-diammine)nitro kaltate(III) K-Ocobalt(II)	nne- chloridobis(ethane- itrito 1,2-diamine)nitro K-
(a) chlorobisethylenediamine	(b) nitritocobalt(III) chlorid 1,2-dian K-Ocob	obis(ethane-chloridobis(ethanenine)nitro 1,2-diammine)nitro kaltate(III) K-Ocobalt(II)	nne- chloridobis(ethane- itrito 1,2-diamine)nitro K-
(a) chlorobisethylenediaminer chloride	(b) nitritocobalt(III) chlorid 1,2-dian K-Ocob chloride	(c) obis(ethane- chloridobis(ethane- nine)nitro 1,2-diammine)ni oaltate(III) K-Ocobalt(II) chloridde	nne- chloridobis(ethane- itrito 1,2-diamine)nitro K-
(a) chlorobisethylenediaminer chloride26) Graphite and diamond are	(b) nitritocobalt(III) chlorid 1,2-dian K-Ocob chloride	(c) obis(ethane- chloridobis(ethane- nine)nitro 1,2-diammine)ni oaltate(III) K-Ocobalt(II) chloridde	nne- chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride
(a) chlorobisethylenediaminer chloride26) Graphite and diamond are(a) Covalent and molecular	(b) nitritocobalt(III) chlorid- 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals	obis(ethane-chloridobis(ethane-inine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals
(a) chlorobisethylenediaminer chloride26) Graphite and diamond are(a) Covalent and molecula crystals	(b) nitritocobalt(III) chloride 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of	obis(ethane-chloridobis(ethane-inine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions ar	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals
 (a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre 	(b) nitritocobalt(III) chloride 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of of the cube, the correct f	obis(ethane-chloridobis(ethane)nitro 1,2-diammine)nitro laltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions afformula of AxBy is	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals
 (a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre 	(b) nitritocobalt(III) chloride 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of the cube, the correct f AB ₃	obis(ethane- chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions are formula of AxBy is (c) A ₃ B (d)	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face
 (a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed and an ion occupying entre (a) AB 	(b) nitritocobalt(III) chloride 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of the cube, the correct f AB ₃	obis(ethane- chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions are formula of AxBy is (c) A ₃ B (d) et in cubic packing is	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face
 (a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed and an ion occupying entre (a) AB 	(b) nitritocobalt(III) chlorida 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of of the cube, the correct f AB ₃ (atoms to tetrahedral hole (b) 1:2	obis(ethane- chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions are formula of AxBy is (c) A ₃ B (d) et in cubic packing is	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face A ₈ B ₆
(a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed at (a) 1:1	(b) nitritocobalt(III) chlorida 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of of the cube, the correct f AB ₃ (atoms to tetrahedral hole (b) 1:2	obis(ethane- chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions are formula of AxBy is (c) A ₃ B (d) et in cubic packing is	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face A ₈ B ₆
(a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed at (a) 1:1 (29) Solid CO ₂ is an example of	(b) nitritocobalt(III) chlorida 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of the cube. the correct f AB ₃ (atoms to tetrahedral hole (b) 1:2 of (b) metallic solid	c) obis(ethane- chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions are formula of AxBy is (c) A ₃ B (d) e in cubic packing is (c) 2:1 (c) molecular solid	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face A ₈ B ₆ d) 1:4
(a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed at (a) 1:1 (a) Solid CO ₂ is an example of (a) Covalent solid 30) Assertion: monoclinic sul	(b) nitritocobalt(III) chlorida 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of of the cube, the correct f AB ₃ (atoms to tetrahedral hole (b) 1:2 of (b) metallic solid phur is an example of m	c) obis(ethane-chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions are formula of AxBy is (c) A ₃ B (d) e in cubic packing is (c) 2:1 (c) molecular solid conoclinic crystal system	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face A ₈ B ₆ d) 1:4
(a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed at (a) 1:1 (29) Solid CO ₂ is an example of (a) Covalent solid 30) Assertion: monoclinic sul Reason: for a monoclinic s	(b) nitritocobalt(III) chlorida 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of the cube, the correct f AB ₃ (atoms to tetrahedral hole (b) 1:2 of (b) metallic solid phur is an example of m ystem, $a - b - c$ and a	c) obis(ethane-chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions are formula of AxBy is (c) A ₃ B (d) e in cubic packing is (c) 2:1 (c) molecular solid conoclinic crystal system	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face A ₈ B ₆ d) 1:4 (d) ionic solid
(a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed at (a) 1:1 (29) Solid CO ₂ is an example of (a) Covalent solid 30) Assertion: monoclinic sul Reason: for a monoclinic s	(b) nitritocobalt(III) chlorida 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of of the cube. the correct f AB ₃ (atoms to tetrahedral hole (b) 1:2 of (b) metallic solid phur is an example of m ystem, $a - b - c$ and a son are (b) Both assertice	(c) obis(ethane- chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammine)nitro taltate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions are formula of AxBy is (c) A ₃ B (d) e in cubic packing is (c) 2:1 (c) molecular solid conoclinic crystal system (a = γ = 90 ⁰ , β - 90 ⁰ on and reason are (c) Asserti	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face A ₈ B ₆ d) 1:4 (d) ionic solid
(a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed at (a) 1:1 (a) Solid CO ₂ is an example of (a) Covalent solid 30) Assertion: monoclinic sul Reason: for a monoclinic sul assertion and reasons	(b) nitritocobalt(III) chlorida 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of the cube. the correct f AB ₃ (atoms to tetrahedral hole (b) 1:2 of (b) metallic solid phur is an example of m ystem, a - b - c and a son are (b) Both assertice	obis(ethane- chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammi	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face A ₈ B ₆ d) 1:4 (d) ionic solid on is (d) Both
(a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed at (a) 1:1 29) Solid CO ₂ is an example of (a) Covalent solid 30) Assertion: monoclinic sul Reason: for a monoclinic sul Reason: for a monoclinic sul true and reason is the correspondent.	(b) nitritocobalt(III) chlorida 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of the cube, the correct f AB ₃ (atoms to tetrahedral hole (b) 1:2 of (b) metallic solid phur is an example of m ystem, a - b - c and a son are (b) Both assertic ct true but reason is explanation of as	obis(ethane- chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammi	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face A ₈ B ₆ d) 1:4 (d) ionic solid on is (d) Both ason is assertion and reason are false.
(a) chlorobisethylenediaminer chloride 26) Graphite and diamond are (a) Covalent and molecular crystals 27) An ionic compound AxBy and A ion occupying entre (a) AB (b) 28) The ratio of close packed at (a) 1:1 (a) Solid CO ₂ is an example of (a) Covalent solid 30) Assertion: monoclinic sul Reason: for a monoclinic sul rue and reason is the correct explanation of assertion	(b) nitritocobalt(III) chlorida 1,2-dian K-Ocob chloride ar (b) ionic and coval crystals crystallizes in fcc type of of the cube. the correct f AB ₃ (atoms to tetrahedral hole (b) 1:2 of (b) metallic solid phur is an example of m ystem, a - b - c and a son are (b) Both assertic ct true but reason is explanation of as a → B the rate constant in	obis(ethane- chloridobis(ethanine)nitro 1,2-diammine)nitro 1,2-diammine)nitro altate(III) K-Ocobalt(II) chloridde lent (c) both covalent crystals crystal structure with B ions are formula of AxBy is (c) A ₃ B (d) e in cubic packing is (c) 2:1 (c) molecular solid conoclinic crystal system $\alpha = \gamma = 90^{0}, \beta - 90^{0}$ on and reason are (c) Asserting is anot the correct true but reason true is a reason false.	chloridobis(ethane- itrito 1,2-diamine)nitro K- Ocobalt(III) chloride (d) both molecular crystals t the centre of each face A ₈ B ₆ d) 1:4 (d) ionic solid on is (d) Both ason is assertion and reason are false.

(c) 1.10V

(c) 390.7

(c) $0.086 \text{ S cm}^2\text{mol}^{-1}$

(d) 28.8 S cm² mol⁻¹

(d) $\log \frac{1}{n}$, $\log K$

surface area

H and Δ S are positive

false

(c) Δ G is negative but Δ (d) Δ G, Δ H and Δ S

(d) increases with increase in

(d) gas in liquid

true but reason is assertion and

all are negative.

reason are false

(a) 0.84V (b) 1.34V 44) The molar conductivity of a 0.5 mol dm⁻³ solution of AgNO₃ with electrolytic conductivity of 5.76×10^{-3} S cm⁻¹ at 298 K is (a) $2.88 \text{ S cm}^2\text{mol}^{-1}$ (b) $11.52 \text{ S cm}^2\text{mol}^{-1}$ 45) Electrolyte KCl KNO3HCl NaOACNaCl Λ^{-} 149.9 145.0 426.2 91.0 Calculate Λ^{o}_{HoAC} using appropriate molar conductances of the electrolytes listed above at infinite dilution in water at 25°C. (a) 517.2 (b) 552.7 46) For freudlich isotherm a graph of $\log \frac{x}{m}$ is plotted against $\log P$. The slope of the line and its y – axis intercept respectively corresponds to (b) $\log \frac{1}{n}$,K (c) $\frac{1}{n}$, $\log K$ (a) $\frac{1}{n}$,K 47) Which of the following is incorrect for physisorption? (b) increases with increase in (c) low heat of reversible temperature adsorption 48) Which one of the following characteristics are associated with adsorption? (a) Δ G and Δ H are (b) \triangle G and \triangle S are negative but Δ S is negative but Δ H is positive positive 49) Fog is colloidal solution 0 of (a) solid in gas (b) gas in gas (c) liquid in gas 50) Assertion: Coagulation power of Al³⁺ is more than Na⁺. Reason: greater the valency of the flocculating ion added, greater is its power to cause precipitation (a) if both assertion and reason (b) if both assertion and reason are (c) assertion is (d) both are true and reason is the correct true but reason is not the correct explanation of assertion. explanation of assertion ****************** 1) (b) Al₂O₃nH₂O 2) (c) SO₂ 3) (c) $MgCO_3 \rightarrow MgO + CO_2$ 4) (b) AL₂O₃ 5) (a) Al 6) (c) basic 7) (d) accepts OH- from water ,releasing proton. 8) (b) B_3H_6 9) (a) Aluminium 10) (c) four 11) (a) Nessler's reagent 12) (d) ability to form $p\pi$ - $p\pi$ bonds with itself 13) (d) $1s^2 2s^2 2p^6 3s^2 3p^3$

14)

(b) P_4 (white) and PH_3

 $50 \times 1 = 50$ 98 SLIP TEST PAPERS PDF COST RS.500 ONLY PHYSICS 30 TEST PAPERS 50 MARKS EACH UPLOAD ONLY IN MY WHATSAPP GROUP CHEMISTRY 30 TEST PAPERS 50 MARKS EACH MARCH 26 2025 6AM - 12 NOON - 6PM TEST GROUP FEES **RS.1500 ONLY** BIOLOGY 38 TEST PAPERS JOIN NOW! RAVI TEST PAPERS & NOTES, WHATSAPP - 8056206308

15) (b) Nitroso ferrous sulphate 16) (b) in case of Sc, 3d orbital are partially filled but in Zn these are completely filled 17) (a) Cr 18) (a) Ti 19) (c) Ni²⁺ 20) (a) 5.92BM 21) (d) 9 22) (b) 0.002 23) (c) $[M(H_2O)_5Cl]SO_4H_2O$ 24) (c) +3 and -1 respectively 25) (a) chlorobisethylenediaminenitritocobalt(III) chloride 26) (c) both covalent crystals 27) (b) AB₃ 28) (b) 1:2 29) (c) molecular solid 30) (a) Both assertion and reason are true and reason is the correct explanation of assertion 31) (c) $(1x10^{-2})e^{-60x}$ 32) (c) 20 min 33) (b) 34) (d) Without knowing the rate constant, $t_{1/2}$ cannot be determined from the given data 35) (c) $1.5k_1=3k_2=k_3$ 36) (d) $5.619 \times 10^{-12} \text{mol}^3 \text{L}^{-3}$ 37)

(d) iii

38)

(c) $1.08 \times 10^{-10} \text{mol}^2 \text{L}^{-2}$ 39) (a) 0.5×10^{-15} 40) (c) OH and F, respectively 41) (c) 6.022×10^{22} 42) (b) -2.69 and non spontaneous 43) (c) 1.10V 44) (b) 11.52 S cm²mol⁻¹ 45) (c) 390.7 46) (c) $\frac{1}{n}$, $\log K$ 47) (b) increases with increase in temperature 48) (d) Δ G, Δ H and Δ S all are negative. 49)

(a) solid in gas

50)

(a) if both assertion and reason are true and reason is the correct explanation of assertion.

