12TH	DM	MO	DEL	DA	DED	0
1211	BVI	VI()	111111	PA	PER	7

12th Standard **Business Maths**

Reg.No.:					
		To	tal N	1arks	: 90

Date: 29-Nov-19

Exam Time: 03:00:00 Hrs

(a) 0.214

DADTI

		PART I		$20 \times 1 = 20$
		ANSWER ALL	ı.	
1)	If $\rho(A)$ =r then which of the	following is correct?		
	(a) all the minors of order r which does not vanish	(b) A has at least one minor of order r which does not vanish	(c) A has at least one (r+1) order minor which vanishes	(d) all (r+1) and higher order minors should not vanish
2)	If the number of variables in	n a non- homogeneous system A	AX = B is n, then the system possess	ses a unique solution only when
	(a) $\rho(A) = \rho(A, B) > n$	(b) $\rho(A) = \rho(A, B) < n$	(c) $\rho(A) = \rho(A, B) = n$	(d) none of these
	$\int \frac{dx}{\sqrt{x^2 - 36}}$ is			
	(a) $\sqrt{x^2 - 36} + c$ (b) 1	'	$\log\left x - \sqrt{x^2 - 36}\right + c \tag{d}$	$\log\left x^2 + \sqrt{x^2 - 36}\right + c$
4)	The value of $\int_{2}^{3} f(5-x) dx - \frac{1}{2} f(5-x) dx$	$\int_{2}^{3} f(x) dx$ is		
	(a) 1	(b) 0	(c) -1	(d) 5
5)	$\int (x-1)e^{-x} dx = \underline{\hspace{1cm}}$	+c		
	(a) -xe ^x	(b) xe ^x	(c) -xe ^{-x}	(d) xe ^{-x}
6)	The demand function for the	e marginal function MR = 100 -		
	(a) $100 - 3x^2$	(b) $100x - 3x^2$	(c) $100x - 9x^2$	(d) $100 + 9x^2$
7)	For a demand function p, if	$\int \int \frac{dp}{p} = k \int \frac{dx}{x}$ then k is equal t	to	
	(a) η d	(b) -η d	(c) $\frac{-1}{nd}$	(d) $\frac{1}{\eta d}$
8)	The value of $\int_{-3}^{2} x+1 dx$	is	1-	γ
	(a) 4	(b) $\frac{1}{4}$	(c) 8	(d) 2
9)	If $y=cx + c - c^3$ then its diffe	erential equation is		
	(a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$	(b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} - \frac{dy}{dx}$	$\frac{dy}{dx} \qquad \qquad (c) \frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)^3 - $	$x\frac{dy}{dx} \qquad \qquad (d) \frac{d^3y}{dx^3} = 0$
10)	The differential equation of	all circles with centre at the original	gin is	
	(a) $xdy + ydx = 0$	(b) $xdy - ydx = 0$	(c) $xdx + ydy = 0$	(d) $xdx - ydy = 0$
11)	Lagrange's interpolation for	rmula can be used for		
	(a) equal intervals only	(b) unequal intervals only	(c) both equal and unequal interval	s (d) none of these.
12)	A listing of all the outcomes	s of an experiment and the proba	ability associated with each outcom	e is called
	(a) probability distribution	(b) probability density fu	unction (c) attributes	(d) distribution function
13)	The probability density fund	ction p(x) cannot exceed		
	(a) zero	(b) one (c)	mean (d) in	finity
14)	A manufacturer produces sv	witches and experiences that 2 p	er cent switches are defective. The	probability that in a box of 50
	switches, there are atmost to	•	•	•
	(a) $2.5 e^{-1}$	(b) e^{-1} (c) $2e^{-1}$	(d) none of the above	
15)	A statistical analysis of long	g-distance telephone calls indica	ites that the length of these calls is n	normally distributed with a mean

of 240 seconds and a standard deviation of 40 seconds. What proportion of calls lasts less than 180 seconds?

(c) 0933

(d) 0.067

(b) 0.094

16) Errors in sampling a	are of			
(a) Two types	(b) three types	(c) four types	(d) five types	
17) The standard error of	of sample mean is			
(a) $\frac{\sigma}{\sqrt{2n}}$	(b) $\frac{\sigma}{n}$	(c) $\frac{\sigma}{\sqrt{n}}$	(d) $\frac{\sigma^2}{\sqrt{n}}$	
18) Another name of co	onsumer's price index number is:			
(a) Whole-sale price	e index number (b)	Cost of living index	(c) Sensitive (d) Compo	osite
	y, recession, depression and recover	•		
(a) Secular trend	(b) Seasonal fluctuation!	(c) Cyclic movements	(d) irregular variation	
	ocation in any row or column in an a	assignment problem can be		
(a) Exactly one	(b) at least one	(c) at most one	(d) none of these	
	PART II			$7 \times 2 = 14$
	SIX QUESTIONS AND QUES	TION NUMBER 30 IS CO	OMPULSORY.	
-	equation by using Cramer's rule			
5x + 3y = 17; 3x + 6				
22) Integrate the follow	ing with respect to x. $\frac{8x+13}{\sqrt{4x+7}}$			
23) Using second funda	mental theorem, evaluate the follow	ring:		
$\int_{1}^{e} \frac{dx}{x(1+\log x)^{3}}$				
24)	,	,		
A firm's marginal re	evenue function is MR = $20e^{-x/10}$ (1)	$-\frac{x}{10}$). Find the corresponding	ng demand function.	
25) Find the area of the	region bounded by the curve between	en the parabola $y = 8x^2 - 4x +$	6 the y-axis and the ordinate a	t x = 2.
26) Solve the following	differential equations (4D ² + 16D +	$-15)y = 4e^{-\frac{3}{2}x}$		
	estimate the output of a factory in 1	986 from the following data		
Year 1974 1978 19	982 1990			
Output				
in 25 60 80	170			
1000				
tones	1 . ((2) . ((2) . (2) . (3)			
` ´	now that $f(0)$, $\Delta(0)$, Δ^2 are in G.P			
•	alue for the random variable of an un			
30) A pair of dice is thro	own 4 times. If getting a doublet is c	considered a success, find the	probability of 2 successes.	
ANGUED AND	PART II	TELONING DED A 10 CO	NAME OF THE OF T	$7 \times 3 = 21$
	SIX QUESTIONS AND QUES		MPULSORY.	
=	ons $x+2y-3z=-2,3x-y-2z=1,2x+3y$	y-5z=k are consistent.		
	al as the limit of a sum: $\int_{1}^{2} (2x+1)dx$			
33) Determine the cost	of producing 3000 units of commodi	ity if the marginal cost in rupe	es per unit is C'(x)= $\frac{x}{3000}$ + 2.50)

34) If the marginal cost of producing x shoes is given by $(3xy + y^2)dx + (x^2 + xy)dy = 0$ and the total cost of producing a pair of

35) Assume the mean height of children to be 69.25 cm with a variance of 10.8 cm. How many children in a school of 1,200 would

36) Alpha particles are emitted by a radio active source at an average rate of 5 in a 20 minutes interval. Using Poisson distribution

find the probability that there will be at least 2 emission in a particular 20 minutes interval ($e^{-5} = 0.0067$).

shoes is given by Rs. 12. Then find the total cost function.

you expect to be over 74 cm tall?

- 37) The standard deviation of a sample of size 50 is 6.3. Determine the standard error whose population standard deviation is 6?
- 38) A random sample of marks in mathematics secured by 50 students out of 200 students showed a mean of 75 and a standard deviation of 10. Find the 95% confidence limits for the estimate of their mean marks.
- 39) The following data gives readings of 10 samples of size 6 each in the production of a certain product. Draw control chart for mean and range with its control limits.

Sample	1	2	3	4	5	6	7	8	9	10
Mean	383	508	505	582	557	337	514	614	707	753
Range	95	128	100	91	68	65	148	28	37	80

40) Obtain an initial basic feasible solution to the following transportation problem using Vogel's approximation method.

Ware houses Stores III Η IV Availability (a,) A 5 1 3 3 34 В 3 3 5 4 15 C 3 6 4 4 12 D4 1 4 5 19 Requirement 21 25 17 17 (b_i)

PART IV $7 \times 5 = 35$ ANSWER ALL

41) a) Construct Fisher's price index number and prove that it satisfies both Time Reversal Test and Factor Reversal Test for data following data.

Tollowing data.								
Commodities	Base	Year	Current Year					
Commodities	Price	Quantity	Price	Quantity				
Rice	40	5	48	4				
Wheat	45	2	42	3				
Rent	90	4	95	6				
Fuel	85	3	80	2				
Transport	50	5	65	8				
Miscellaneous	65	1	72	3				

(OR)

b) Solve the following assignment problem.

Task P 9 26 15
Q 13 27 6
R 35 20 15
S 18 30 20

42) a) The mean weekly sales of soap bars in departmental stores were 146.3 bars per store. After an advertising campaign the mean weekly sales in 400 stores for a typical week increased to 153.7 and showed a standard deviation of 17.2. Was the advertising campaign successful?

(OR)

- b) Measurements of the weights of a random sample of 200 ball bearings made by certain machine during one week showed a mean of 0.824 newtons and a S.D. of 0.042 newton's. Find a) 95% and b) 99% confidence limits for the mean weight of all the ball bearings.
- 43) a)

Suppose that the quantity needed $Q_d = 42 - 4p - 4\frac{dp}{dt} + \frac{d^2p}{dt^2}$ and quantity supplied $Q_s = -6 + 8p$ where p is the price. Find the s equilibrium price for market clearance.

(OR

b) From the following table of half- yearly premium for policies maturing at different ages. Estimate the premium for policies maturing at the age of 63.

Age	45	50	55	60	65
Premium	114.84	96.16	83.32	74.48	63.48

a) If the probability that an individual suffers a bad reaction from injection of a given serum is 0.001, determines the probability that out of 2,000 individuals (a) exactly 3, and (b) more than 2 individuals will suffer a bad reaction.

(OR)

- b) Marks in an aptitude test given to 800 students of a school was found to be normally distributed 10% of the students scored below 40 marks and 10% of the students scored above 90 marks. Find the number of students scored between 40 and 90?
- 45) a) The demand and supply curves are given by $P_d = \frac{16}{x+4}$ and $P_s = \frac{x}{2}$. Find the Consumer's surplus and producer's surplus at the market equilibrium price.

(OR)

b) From the following table, estimate the premium for a policy maturing at the age of 58.

Age (x)	40	45	50	55	60
Premium	114.84	06 16	92 2 2	71 18	60 10
(y)	114.04	90.10	03.32	74.40	06.46

46) a) Evaluate
$$\int_{1}^{4} f(x)dx$$
, where $\begin{cases} 7x + 3, & \text{if } 1 \le x \le 3 \\ 8x, & \text{if } 3 \le x \le 4 \end{cases}$

(OR)

- b) The marginal cost and marginal revenue with respect to commodity of a firm are given by C'(x) = 8 + 6x and R'(x) = 24. Find the total Profit given that the total cost at zero output is zero.
- 47) a) Evaluate $\int_{1}^{2} \frac{1}{(x+1)(x+2)} dx$

(OR)

b) Sketch the graph of y = Ix - 5|. Evaluate $\int_0^1 |4x - 5| dx$
