RAVI MATHS TUITION CENTER, GKM COLONY, CHENNAI- 82. PH: 8056206308

12 TH BM MODEL PAPER 4

Date: 01-Nov-19

Total Marks: 90

 $20 \times 1 = 20$

Reg.No.:

(d) n

12th Standard **Business Maths**

(c) m

Instructions: (1) check the question paper for fairness of printing. if there is any lack of fairness, inform the hall supervisor immediately.(2) use blue or black ink to write and underline and pencil to

PART I

ANSWER ALL THE QUESTIONS.

draw diagrams. Exam Time: 03:00:00 Hrs

(a) 0

2)

1) The rank of m×n matrix whose elements are unity is

(b) 1

2)	If $A = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$, then $\rho(A)$ is	is		
	(a) 0	(b) 1	(c) 2	(d) n
3)	$\int \frac{\sin 2x}{2\sin x} dx$ is			
	(a) $\sin x + c$	(b) $\frac{1}{2} \sin x + c$	(c) $\cos x + c$	(d) $\frac{1}{2}\cos x + c$
4)	$\int \left[\frac{9}{x-3} - \frac{1}{x+1} \right] dx \text{ is}$			
	(a) $log x-3 - log x+1 + c$	(b) $log x-3 + log x+1 + c$	(c) $9log x-3 - log x+1 + c$	(d) $9log x-3 + log x+1 + c$
5)	Area bounded by the curve	$y = \frac{1}{x}$ between the limits 1 and 2	is	
	(a) log2 sq.units	(b) log5 sq.units	(c) log3 sq.units	(d) log 4 sq.units
6)	The marginal cost function	is MC = $100 \sqrt{x}$. find AC given t	that $TC = 0$ when the out put is	s zero is
	(a) $\frac{200}{3} x^{\frac{1}{2}}$	(b) $\frac{200}{3}x^{\frac{3}{2}}$	(c) $\frac{200}{3x^{\frac{3}{2}}}$	(d) $\frac{200}{3x_2^{\frac{1}{2}}}$
7)	The order and degree of the	e differential equation $\sqrt{\frac{d^2y}{dx^2}} = \sqrt{\frac{d^2y}{dx^2}}$	$\frac{dy}{dx} + 5$ are respectively	
	(a) 2 and 3	(b) 3 and 2	(c) 2 and 1	(d) 2 and 2
8)	If $y=cx + c - c^3$ then its diff	ferential equation is		
	(a) $y = \frac{dy}{dx} + \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^3$	(b) $y = \left(\frac{dy}{dx}\right)^3 = x\frac{dy}{dx} - \frac{dy}{dx}$	$\frac{dy}{dx} + y = \left(\frac{dy}{dx}\right)$	$\int_{-\infty}^{3} -x \frac{dy}{dx} $ (d) $\frac{d^3y}{dx^3} = 0$
9)	If $h = 1$, then $\Delta(x^2) =$			
	(a) 2x	(b) $2x-1$	(c) $2x + 1$	(d) 1
10)	For the given data find the x5 6 9 11 y12131518	value of $\Delta^3 y_0$ is		
	(a) 1	(b) 0	(c) 2	(d) -1
11)	A variable that can assume	any possible value between two p	oints is called	
	(a) discrete random variable	(b) continuous random varia	able (c) discrete sample	space (d) random variable
12)	If we have $f(x)=2x$, $0 \le x$	≤ 1 , then f (x) is a		
	(a) probability distribution	(b) probability density function	(c) distribution function	(d) continuous random variable

13)	If Z is a standard normal variate, the proportion of item (a) 0.4987 (b) 0.1915	ns lying between $Z = -0.5$ and $Z = -0.5$ (c) 0.3072	-3.0 is (d) 0.3098	
14)	If for a binomial distribution b(n,p) mean = 4 and varia	ance = $4/3$, the probability, $P(X \ge 5)$	is equal to:	
	(a) $(2/3)^6$ (b) $(2/3)^5(1/3)$	(c) $(1/3)^6$	(d) $4(2/3)^6$	
15)	A of statistical individuals in a population	n is called a sample.		
	(a) Infinite set (b) finite subset	(c) finite set	(d) entire set	
16)	Errors in sampling are of			
	(a) Two types (b) three types	(c) four types	(d) five types	
17)	A time series consists of			
	(a) Five components (b) Four components	(c) Three components	(d) Two components	
18)	The seasonal variation means the variations occurring	with in		
	(a) A number of years (b) within a year	(c) within a month	(d) within a week	
19)	In a non – degenerate solution number of allocations is	S		
	(a) Equal to $m+n-1$ (b) Equal to $m+n+1$	(c) Not equal to $m+n-1$	(d) Not equal to m+n+1	
20)	If number of sources is not equal to number of destinat	tions, the assignment problem is cal	led	
	(a) balanced (b) unsymmetric	(c) symmetric	(d) unbalanced	
	PART – I	II		$7 \times 2 = 14$
	ANSWER ANY SIX QUESTIONS AND QUES	STION NUMBER 30 IS COMPULS	ORY	
21)	Solve the following equations by using Cramer's rule $2x + 3y = 7$; $3x + 5y = 9$			
22)	Integrate the following with respect to x. $\frac{x^3}{x+2}$			
23)	Using integration, find the area of the region bounded	by the line $y - 1 = x$, the x axis and	the ordinates $x = -2$, $x = 3$.	
24)	Solve: $ydx - xdy = 0$			
25)	Find the missing entry in the following table $\begin{array}{c c} x & 0123 & 4 \\ \hline y_x & 139 - 81 \end{array}$			
26)	The discrete random variable X has the following prob	pability function		
	$P(X=x)=\{kx x=2, 4, 6k(x-2) x=80$	otherwisde where k is a consta	ant. Show that $k = \frac{1}{18}$	
	Mention the properties of binomial distribution.			
28)	What is standard error?			
29)	Define secular trend.			
30)	Write mathematical form of transportation problem.			
	PART – I	III		$7 \times 3 = 21$
	ANSWER ANY SIX QUESTIONS AND QUES	STION NUMBER 40 IS COMP	PULSORY	
31)	Show that the equations $2x+y+z=5, x+y+z=4, x-y+2z=4$	= 1 are consistent		
	and hence solve them.			
	Evaluate $\int \frac{2x^2 - 14x + 24}{x - 3} dx$			
33)	Find the area of the region bounded by the parabola $y = \frac{1}{2}$	$= 4 - x^2$, x -axis and the lines x =	0, x = 2	
34)	Solve $9y'' - 12y' + 4y = 0$			

- Evaluate $\Delta \left[\frac{5x+12}{x^2+5x+6} \right]$ by taking '1' as the interval of differencing.
- 36) Two unbiased dice are thrown simultaneously and sum of the upturned faces considered as random variable. Construct a probability mass function.

- 37) In tossing of a five fair coin, find the chance of getting exactly 3 heads.
- 38) Using the Kendall-Babington Smith Random number table, Draw5 random samples.

		_																	
2	3 15	75	48	59	01	83	72	59	93	76	24	97	08	86	95	23	03	67	44
0.	5 54	55	50	43	10	53	74	35	08	90	61	18	37	44	10	96	22	13	43
1	487	16	03	50	32	40	43	62	23	50	05	10	03	22	11	54	36	08	34
3	897	67	49	51	94	05	17	58	53	78	80	59	01	94	32	42	87	16	95
9	731	26	17	18	99	75	53	08	70	94	25	12	58	41	54	88	21	05	13

39) Fit a trend line by the method of semi-averages for the given data.

Year	2000	2001	2002	2003	2004	2005	2006
Production	105	115	120	100	110	125	135

40) Determine an initial basic feasible solution to the following transportation problem using North West corner rule.

	D_{1}	D_2	D_3	D_4	Availability
O_1	6	4	1	5	14
O_2	8	9	2	7	16
O_3	4	3	6	2	5
Requirement	6	10	15	4	35

Here O_i and D_i represent ith origin and jth destination.

PART IV

 $7 \times 5 = 35$

ANSWER ALL THE QUESTIONS.

41) a) In year 2000 world gold production was 2547 metric tons and it was growing exponentially at the rate of 0.6% per year. If the growth continues at this rate, how many tons of gold will be produced from 2000 to 2013? [e^{0.078} = 1.0811)

(OR

b)

Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

mac	nines
maci	nines

		I	II	III	IV
	A	10	12	19	11
	B	5	10	7	8
jobs	C	12	14	13	11
	D	8	15	11	9

42) a) Using graphic method, find the value of y when x = 38 from the following data:

X	10	20	30	40	50	60
y	63	55	44	34	29	22

(OR)

b) Calculate Fisher's price index number and show that it satisfies both Time Reversal Test and Factor Reversal Test for data given below.

C	Price	;	Quandity		
Commodities	2003	2009	2003	2009	
Rice	10	13	4	6	
Wheat	125	18	7	8	
Rent	25	29	5	9	
Fuel	2511	14	8	10	
Miscellaneous	14	17	6	7	

43) a) Evaluate
$$\int \left[\frac{1}{\log x} - \frac{1}{(\log x)^2} \right] dx$$

(OR)

- b) Consider a random variable X with probability density function $f(x)=\{4x^2, if 0 < x < 10, otherwise Find E(X) and V(X)$
- 44) a) Solve by Cramer's rule x+y+z=4,2x-y+3z=1,3x+2y-z=1

(OR)

- b) The marginal cost function of a commodity in a firm is $2 + e^{3x}$ where X is the output. Find the total cost and average cost function if the fixed cost is Rs. 500.
- 45) a) Solve $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$

(OR)

- b) An ambulance service claims that it takes on the average 8.9 minutes to reach its destination in emergency calls. To check on this claim, the agency which licenses ambulance services has them timed on 50 emergency calls, getting a mean of 9.3 minutes with a standard deviation of 1.6 minutes. What can they conclude at the level of significance
- 46) a) For what values of k, the system of equations kx+y+z=1,x+ky+z=1,x+y+kz=1 have
 - (I) Unique solution
 - (ii) More than one solution
 - (iii) no solution

(OR)

b) Assuming one in 80 births is a case of twins, calculate the probability of 2 or more sets of twins on a day when 30 births occur.

Suppose that the quantity needed $Q_d = 42$ -4p-4 $\frac{dp}{dt} + \frac{d^2p}{dt^2}$ and quantity supplied Q_s =-6+8p where p is the price. Find the s equilibrium price for market clearance.

(OR)

b) Using Lagrange's formula find the value of y when x = 4 from the following table.

X	0	3	5	6	8
У	276	460	414	343	110

LIKE AND SUBSCRIBE MY YOUTUBE CHANNEL-SR MATHS TEST PAPERS
