RAVI MATHS TUITION CENTER, CHENNAI – 82. PH - 8056206308

12TH BM MODEL PAPER 10

12th Standard	
---------------	--

Reg.No.:			

Date: 29-Nov-19

Total Marks: 90

 $20 \times 1 = 20$

Business Maths
estructions: (1) check the question paper for fairness of

Exam Time: 03:00:00 Hrs

Instructions: (1) check the question paper for fairness of printing. if there is any lack of fairness, inform the hall supervisor immediately.(2) use blue or black ink to write and underline and pencil to draw diagrams

PART - I

		ANSWER ALL THE	QUESTIONS.	
1)	if $\rho(A) = \rho(A, B)$ then the second (a) Consistent and has infinite		Consistent and has a unique sol	ution (c) Consistent (d) inconsistent
2)	$\int \frac{\sin 2x}{2\sin x} dx$ is			
	(a) $\sin x + c$	(b) $\frac{1}{2} \sin x + c$	(c) $\cos x + c$	(d) $\frac{1}{2}\cos x + c$
	$\int \frac{2x^3}{4+x^4} \mathrm{d}x \mathrm{is}$			
	(a) $log \left 4 + x^4 \right + c$	(b) $\frac{1}{2}log\left 4+x^4\right +c$	(c) $\frac{1}{4}log\left 4+x^4\right +c$	$\log \left \frac{2x^3}{4+x^4} \right + c$
	$\Gamma\left(\frac{3}{2}\right)$			
	(a) $\sqrt{\pi}$	(b) $\frac{\sqrt{\pi}}{2}$	(c) $2\sqrt{\pi}$	(d) $\frac{3}{2}$
5)	If MR and MC denotes the region (a) $P = \int (MR - MC) dx + k$	-	final cost functions, then the pr $dx + k$ (c) $P = \int (MR)(MR)$	
6)	Area bounded by $y = x$ between	ween the lines $y = 1$, $y = 2$ w	with $y = axis$ is	
	(a) $\frac{1}{2}$ sq.units	(b) $\frac{5}{2}$ sq.units	(c) $\frac{3}{2}$ sq.units	(d) 1 sq.unit
7)	Area bounded by $y = e^x$ bet	ween the limits 0 to 1 is		
	(a) (e-1) sq.units	(b) (e+1) sq.units	(c) $\left(1 - \frac{1}{e}\right)$ sq.units	(d) $\left(1 + \frac{1}{e}\right)$ sq.units
3)	If m and n are positive integ	gers then $\Delta^m \Delta^n f(x) =$		
	(a) $\Delta^{m+n}f(x)$	(b) $\Delta^{m}f(x)$	(c) $\Delta^n f(x)$	(d) $\Delta^{m-n}f(x)$
9)	Given $E(X) = 5$ and $E(Y) =$	-2, then $E(X - Y)$ is		
	(a) 3	(b) 5		(c) 7
10)	$\int_{-\infty}^{\infty} f(x) dx$ is always equal to	О		
	(a) zero	(b) one	(c) E(X)	(d) $f(x)+1$
11)	In a parametric distribution	the mean is equal to variance	ce is :	
	(a) binomial	(b) normal	(c) poisson	(d) all the above
12)	The starting annual salaries	of newly qualified chartere	d accountants (CA's) in South	Africa follow a normal distribution with a
	mean of Rs.180,000 and a s	standard deviation of Rs. 10	,000. What is the probability t	that a randomly selected newly qualified
	CA will earn between Rs.16	65,000 and Rs.175,000 per a	nnum?	
	(a) 0.819	(b) 0.242	(c) 0.286	(d) 0.533
13)	If $P(Z > z) = 0.5832$ what is	s the value of z (z has a stand	dard normal distribution)?	

	(a)	-0.48	(b) 0.48	(c) 1.04	(d) -0.21	
14)	In_	the heterogene	ous groups are divided into l	homogeneous groups	3.	
	(a)	Non-probability sample (b	a simple random sample	(c) a stratified rando	om sample (d) systematic	random sample
15)	Тур	pe II error is				
	(a)	Accept H ₀ when it is wrong	(b) Accept H_0 when it is true	ue (c) Reject H ₀ w	hen it is true (d) Reject Ho	0 when it is false
16)	Lea	ast square method of fitting a	trend is			
	(a)	Most exact (b) Leas	t exact (c) Full of su	bjectivity	(d) Mathematically unsolve	ed
17)	The	e quantities that can be nume	rically measured can be plot	ted on a		
	(a)	p - chart (b)	c - chart	(c) x bar chart	(d) np - chart	
18)	Αd	lecline in the sales of ice crea	am during November to Mar	ch is associated with		
	(a)	Seasonal variation	(b) Cyclical variation	(c) random	variation (d) Seco	ular trend
19)	The	e Penalty in VAM represents	difference between the first			
	(a)	Two largest costs (b)	Largest and Smallest costs	(c) Smal	lest two costs (d) N	one of these
20)		cision theory is concerned w				
		analysis of information that is	-	-	optimal decisions in sequential	
	ava	ilable	certainty	problem		above
	4 P	NSWER ANY SIX QUES	PART II	NI NILIMDED 20 I	C COMPLIL CODY	$7 \times 2 = 14$
21)		egrate the following with res		IN NOMBER 30 I	3 COMFOLSOKI.	
		$(x+2) \sqrt{x^2+x+1}$	pect to x.			
		,				
		aluate the following				
	U	$e^{-4x}x^4dx$				
		lculate consumer's surplus if				
24)	For	m the differential equation b	by eliminating α and β from ($(x - \alpha)^2 + (y - \beta)^2 = 1$	r ²	
25)	(D^2)	$(2-3D+2)y = e^{3x}$ which sha	Il vanish for $x = 0$ and for $x = 0$	= log 2		
26)	A s	econd degree polynomial pa	sses though the point (1,-1) ((2,-1) (3,1) (4,5). Fin	d the polynomial.	
27)	The	e discrete random variable X	has the following probabilit	y function		
	P(X	$(\mathbf{x} = \mathbf{x}) = \{k\mathbf{x} \qquad \mathbf{x} = 2, 4, 6\}$	6k(x-2) x = 80	otherwisde where k	is a constant. Show that $k = \frac{1}{18}$	8
28)	Sta	te the properties of distributi	on function.			
29)	Но	w do you define variance in	terms of Mathematical expec	ctation?		
30)	Exp	plain the stratified random sa	mpling with a suitable exam	ple.		
			PART III			$7 \times 3 = 21$
		ANSWER ANY SIX QU	ESTIONS AND QUESTION	N NUMBER 40 IS C	OMPULSORY.	

- 31) Solve: $(3D2 + D 14)y = 4 13e^{\frac{-7}{3}x}$
- 32) A server channel monitored for an hour was found to have an estimated mean of 20 transactions transmitted per minute. The variance is known to be 4. Find the standard error.
- 33) Evaluate $\int_{-1}^{1} \frac{x^5 dx}{a^2 x^2}$
- 34) Solve the differential equation $\frac{dy}{dx} = \frac{x-y}{x+y}$
- 35) Calculate four-yearly moving averages of number of students studying in a higher secondary school in a particular city from the following data.

Year	2001	2002	2003	2004	2005	2006	2007	2008
Sales	124	120	135	140	145	158	162	170

36) Determine an initial basic feasible solution to the following transportation problem using North West corner rule.

	D_{1}	D_2	D_3	D_4	Availabilit
O_1	6	4	1	5	14
O_2	8	9	2	7	16
O_3	4	3	6	2	5
Requirement	6	10	15	4	35

Here O_i and D_i represent ith origin and jth destination.

- 37) A bank manager has observed that the length of time the customers have to wait for being attended by the teller is normally distributed with mean time of 5 minutes and standard deviation of 0.6 minutes. Find the probability that a customer has to wait
 - (i) for less than 6 minutes
 - (ii) between 3.5 and 6.5 minutes
- 38) Consider the following pay-off (profit) matrix Action States

Action	States						
Action	(s_1)	(s ₂)	(s ₃)	(s ₄)			
A_1	5	10	18	25			
A_2	8	7	8	23			
A_3	21	18	12	21			
A_4	30	22	19	15			

Determine best action using maximin principle.

39) 80% of students who do maths work during one study period, will do the maths work at the next study period. 30% of students who do english work during one study period, will do the english work at the next study period.

Initially there were 60 students do maths work and 40 students do english work.

Calculate,

- (i) The transition probability matrix
- (ii) The number of students who do maths work, english work for the next subsequent 2 study periods.
- 40) Show that the equations x + 2y = 3, Y z = 2, x + y + z = 1 are consistent and have infinite sets of solution.

$$PART - IV 7 \times 5 = 35$$

ANSWER ALL THE QUESTIONS.

41) a) In a Poisson distribution the first probability term is 0.2725. Find the next Probability term

The wages of the factory workers are assumed to be normally distributed with mean and variance 25. A random sample of 50 workers gives the total wages equal to Rs. 2,550. Test the hypothesis μ =52, against the alternative hypothesis μ =49 at 1% level of significance.

42) a) From the following table, estimate the premium for a policy maturing at the age of 58.

Age (x)	40	45	50	55	60
Premium (y)	114.84	96.16	83.32	74.48	68.48

(OR)

b) Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

machines

43) a) The probability density function of a random variable X is

$$f(x)=ke^{-|x|}$$
, $-\infty < x < \infty$

Find the value of k and also find mean and variance for the random variable.

(OR)

b) The following data relateto the life(inhours) of 10 samples of 6 electric bulbs each drawn at an interval of one hour from a production process. Draw the control chart for *X* and *R* and comment.

Sample No	Lifetin	ne (inhou	r)			
	1	2	3	4	5	6
1	620	687	666	689	738	686
2	501	585	524	585	653	668
3	673	701	686	567	619	660
4	646	626	572	628	631	743
5	494	984	659	643	660	640
6	634	755	625	582	683	555
7	619	710	664	693	770	534
8	630	723	614	535	550	570
9	482	791	533	612	497	499
10	706	524	626	503	661	754

(For
$$n = 6, A_2 = 0.483, D_3 = 0, D_4 = 2.004$$
)

44) a) Evaluate
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} x \sin x dx$$

(OR)

b) If
$$f(x) = a \sin x + b \cos x$$
 and $f'(0) = 4$, $f(0) = 3$, $f(\frac{\pi}{2}) = 5$, find $f(x)$.

45) a)

A company receives a shipment of 200 cars every 30 days. From experience it is known that the inventory on hand is related to the number of days. Since the last shipment, I(x)=200-0.2x. Find the daily holding cost for maintaining inventory for 30 days if the daily holding cost is Rs. 3.5

(OR)

- b) Solve $(x^2 + 1) \frac{dy}{dx} + 2xy = 4x^2$
- 46) a) The demand and supply functions under pure competition are $P_d = 16 x^2$ and $p_s = 2x^2 + 4$. Find the consumer's surplus and producer's surplus at the market equilibrium price.

(OR

- b) The demand and supply curves are given by $P_d = \frac{16}{x+4}$ and $P_s = \frac{x}{2}$. Find the Consumer's surplus and producer's surplus at the market equilibrium price.
- Suppose that the quantity needed $Q_d = 42$ -4p-4 $\frac{dp}{dt} + \frac{d^2p}{dt^2}$ and quantity supplied Q_s =-6+8p where p is the price. Find the s equilibrium price for market clearance.

(OR)

b) The following data are taken from the steam table

Tempreture C ⁰	140	150	160	170	180
Pressure kg flcm ²	3.685	4.854	6.302	8.076	10.225

Find the pressure at temperature $t = 175^{\circ}$
