RAVI MATHS TUITION CENTER, GKM COLONY, CHENNAI- 82. PH: 8056206308 Date: 30-Nov-19

12TH BM MODEL PAPER 1

Business Maths

12th Standard

Reg.No.:

i	` '	• • • •	•	o write and underline and	•
Ex	am Time : 03:00:00 Hr	'S		Т	otal Marks : 90
		PAR	RT I		$20 \times 1 = 20$
		ANSWER ALL TI			
1)	If A=(1 2 3), then the				
	(a) 0	(b) 2	(c) 3	(d) 1	
2)	Which of the following	ng is not an elementary transfo	ormation?		
		(b) $R_i o 2R_i + 2c_j$	(c) $R_i o 2R_i - 4R_i$	(d) $C_i o C_i + 5C_i$	j
3)	$\int \frac{\log x}{x} dx$, $x > 0$ is				
	(a) $\frac{1}{2} (\log x)^2 + c$	(b) $-\frac{1}{2}$ (lo	(c)	$\frac{2}{r^2} + c \qquad \qquad \text{(d)} \frac{2}{r^2} + c$!
4)	If f (x) is a continuou (a) $\int_a^b f(x)dx + \int_a^c f(x)dx$	s function and a < c < b , then $(x)dx$ (b)	_	(c) $\int_a^b f(x)dx$	(d) 0
5)	Area bounded by the	curve $y = x (4 - x)$ between the	ne limits 0 and 4 with x – axis	is	
	(a) $\frac{30}{3}$ sq.units	(b) $\frac{31}{3}$ sq.units	(c) $\frac{32}{3}$ sq.units	(d) $\frac{15}{2}$ sq.units	
6)	For the demand funct	tion p(x), the elasticity of dema	and with respect to price is un	ity then	
	(a) revenue is constant	t (b) cost function is	constant (c) pro	fit is constant (d) none	of these
7)	Area bounded by y =	x between the limits 0 and 2	2 is		
	(a) 1sq.units	(b) 3 sq.units	(c) 2 sq.units	(d) 4 sq.units	
8)	If $\sec^2 x$ is an integral	ting factor of the differential e	quation $\frac{dy}{dx}$ + Py Q then P =		
	(a) 2 tan x	(b) sec x	(c) $\cos^2 x$	(d) $\tan^2 x$	
9)	The complementary f	function of $\frac{d^3y}{dx^3} - \frac{dy}{dx} = 0$ is			
	(a) $A + Be^x$	$ \begin{array}{ccc} dx^3 & dx \\ \text{(b)} & (A+B)e^X \end{array} $	(c) $(Ax + B)e^x$	(d) $Ae^x + B$	
10	$\Delta^2 y_0 =$			()	
ĺ	• •	(b) $y_2 + 2y_1 - y_0$	(c) $y_2 + 2y_1 + y_0$	(d) $y_2 + y_1 + 2y_0$	
11)		nd the interval of differencing		() 32 31 30	
,	(a) $2x - 3$	(b) 2x +3	(c) $x + 3$	(d) $x - 3$	
12)		sume any possible value betw	` ´	()	
ĺ	(a) discrete random va	· -	_	rete sample space (d) rando	m variable
13)	If c is a constant in a	continuous probability distribu	ution, then $p(x = c)$ is always	equal to	
	(a) zero	(b) one (c) neg	gative (d	l) does not exist	
14)	A variable which can	assume finite or countably inf	finite number of values is kno	wn as	
	(a) continuous	(b) discrete	(c) qualitative	(d) none of them	
15)		aximum probability at the poin	nt of inflexion of normal distr	ibution is	
	(a) $\left(\frac{1}{\sqrt{2\pi}}\right)^{e^{\frac{1}{2}}}$	(b) $\left(\frac{1}{\sqrt{2\pi}}\right)^{e^{\left(-\frac{1}{2}\right)}}$	(c) $\left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{e^{\left(\frac{1}{\sigma\sqrt{2\pi}}\right)}}$	$ (d) \ \left(\frac{1}{\sqrt{2\pi}}\right) $)
16)	A statistical analysis	of long-distance telephone cal	ls indicates that the length of	these calls is normally distribute	ed with a mean

of 240 seconds and a standard deviation of 40 seconds. What proportion of calls lasts less than 180 seconds?

(c) 0933

(d) 0.067

(b) 0.094

(a) 0.214

11)	If $P(Z > z) = 0.5832$ what	is the value of z (z	z nas a standard nori	nai distribution):		
	(a) -0.48	(b) 0.48		(c) 1.04	(d) -0.21	
18)	A finite subset of statistical	al individuals in a p	population is called				
	(a) a sample	(b) a populati	ion	(c) univ	erse	(d) census	
19)	An estimator is said to be	if it c	ontains all the infor	mation in the d	ata about the para	meter it estimates.	
	(a) efficient	(b) sufficient	(0	c) unbiased	(d)	consistent	
20)	Least square method of fit	tting a trend is					
	(a) Most exact (b)	Least exact	(c) Full of subject	tivity	(d) Mathemat	ically unsolved	
			PART – II				$7 \times 2 = 14$
	ANSWER ANY SIX (QUESTIONS AN	ID QUESTION N	IUMBER 30 I	S COMPULSC	PRY.	
21)	A commodity was produc	ed by using 3 units	of labour and 2 un	its of capital, th	e		
	total cost is Rs 62. If the c	commodity had bee	en produced by usin	g 4 units of labor	our		
	and one unit of capital, the	e cost is Rs 56. Wh	nat is the cost per un	it of labour and	l.		
	capital? (Use determinant	method).					
22)	Integrate the following w	ith respect to x. \sqrt{x}	$\overline{x}(x^3-2x+3)$				
23)	Using Integration, find the	e area of the region	bounded the line 2	y + x = 8, the x	axis and the line	x = 2, x = 4.	
24)	Solve: $\frac{dy}{dx} = y \sin 2x$						
25)	If $h = 1$ then prove that (E	$(x^{-1}\Lambda)x^3 = 3x^2 - 3x$	+ 1.				
	In an investment, a man c			obability of 0.6	2 or a loss of Rs.	8.000 with a proba	bility of
- /	0.38. Find the expected ga		110.0,000 Willia pi	oodonny or o.o.	2 01 4 1055 01 165.	o,ooo waa u prood	omity of
27)	A sample of 1000 students		oht is 119 lbs(nound	ls) from a schoo	d in Tamil Nadu S	State was taken and	l their
_,,	average weight was found		•	, and the second			i then
28)	The following table gives						5 and 1991
_0)	Show the growth on a tren		_	erea with the B	irectorate or maa	stres between 170	5 und 1771.
		1986 1987 1988 19					
	<u> </u>	22 36 62 55	- 				
29)	The following data show			nges for ten san	nples of size 4 eac	ch. Construct the co	ontrol chart
	for mean and range chart	and determine whe	ther the process is i	n control			
	Sample number 1 2 3 4	5 6 7 8 9 10					
	\bar{X} 29263734	4144539203423					
	R 39103917	7122005212315					
30)	what is feasible solution a	nd non degenerate	solution in transpor	rtation problem	?		
			PART – III				$7 \times 3 = 21$
	ANSWER ANY SIX (QUESTIONS AN	ID QUESTION N	IUMBER 40 I	S COMPULSO	RY.	
31)	Show that the equations 2	x+y+z=5,x+y+z=4	4, x-y+2z = 1 are con	nsistent			

and hence solve them.

32) Evaluate $\int \frac{x+2}{\sqrt{2x+3}} dx$ 33) Sketch the graph y=|x+3| and evaluate $\int_{-6}^{0} |x+3| dx$. 34) Solve: $(3D2+D-14)y=4-13e^{\frac{-7}{3}x}$

35) From the following table find the missing value

X	2	3	4	5	6
f(x)	45.0	49.2	54.1	-	67.4

36) A continuous random variable X has p.d.f

$$f(x)=5x^4, 0 \le x \le 1$$

Find a1 and a2 such that i) $P[X \le a_1] = P[X > a_1]$ ii) $P[X > a_2] = 0.05$

- 37) If the chance of running a bus service according to schedule is 0.8, calculate the probability on a day schedule with 10 services:
 - (i) exactly one is late
 - (ii) atleast one is late
- 38) A die is thrown 9000 times and a throw of 3 or 4 is observed 3240 times. Find the standard error of the proportion for an unbiased die.
- 39) Calculate three-yearly moving averages of number of students studying in a higher secondary school in a particular village from the following data.

Year	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Number of students	332	317	357	392	402	405	410	427	435	438

40) Obtain the initial solution for the following problem

Destination A B C Supply 1 2 7 4 5 Sources 2 3 3 1 8 3 5 4 7 7 4 1 6 2 14 Demand 7 9 18

PART IV $7 \times 5 = 35$

ANSWER ALL THE QUESTIONS

- 41) a) (i) A sample of 900 members has a mean 3.4 cm and SD 2.61 cm. Is the sample taken from a large population with mean 3.25 cm. and SD 2.62 cm?
 - (ii) If the population is normal and its mean is unknown, find the 95% and 98% confidence limits of true mean.

(OR)

b) Solve the following assignment problem. Cell values represent cost of assigning job A, B, C and D to the machines I, II, III and IV.

		I	II	III	IV
	A	10	12	19	11
	В	5	10	7	8
jobs	C	12	14	13	11

15

machines

42) a) From the data, find the number of students whose height is between 80 cm and 90 em

Height in cm (x)	40-60	60-80	80 - 100	100-120	120-140
No. of. students (y):	250	120	100	70	50

(OR)

b) Construct the Laspeyre's, Paasche's and Fisher's price index number for the following data. Comment on the result.

	Commodities	Base	Year	Current Year		
Co	Commodities	Price	Quantity	Price	Quantity	
ı						

Rice	15	5	16	8
Wheat	10	6	18	9
Rent	8	7	15	8
Fuel	9	5	12	6
Transport	11	4	11	7
Miscellaneous	16	6	15	10

43) a) The elasticity of demand with respect to price P for a commodity is $\frac{x-5}{x}$, x > 5, When the demand is x. Find demand function if the price is 2 when the demand is 7. Also, find the revenue function.

(OR)

b) Using Newton's formula for interpolation estimate the population for the year 1905 from the table:

Year	1891	1901	1911	1921	1931
Population	98.752	1,32,285	1,68,076	1,95,670	2,46,050

- 44) a) For what values of k, the system of equations kx+y+z=1,x+ky+z=1,x+y+kz=1 have
 - (I) Unique solution
 - (ii) More than one solution
 - (iii) no solution

(OR)

- b) Solve: $(D^2 + 14D + 49)y = e^{-7x} + 4$.
- a) A new transit system has just gone into operation in a city. Of those who use the transit system this year, 10% will switch over to using their own car next year and 90% will continue to use the transit system. Of those who use their cars this year, 80% will continue to use their cars next year and 20% will switch over to the transit system. Suppose the population of the city remains constant and that 50% of the commuters use the transit system and 50% of the commuters use their own car this year,
 - (i) What percent of commuters will be using the transit system after one year?
 - (ii) What percent of commuters will be using the transit system in the long run?

(OR)

b) Using Lagrange's formula find the value of y when x = 4 from the following table.

X	0	3	5	6	8
у	276	460	414	343	110

46) a) The marginal cost C'(x) and marginal revenue R'(x) are given by C'(x) = $50 + \frac{x}{50}$ and R'(x) = 60. The fixed cost is Rs. 200. Determine the maximum profit

(OR)

- b) Suppose that the quantity needed $Q_d = 42$ -4p-4 $\frac{dp}{dt} + \frac{d^2p}{dt^2}$ and quantity supplied Q_s =-6+8p where p is the price. Find the sequilibrium price for market clearance.
- 47) a) The demand and supply functions under pure competition are $P_d = 16 x^2$ and $p_s = 2x^2 + 4$. Find the consumer's surplus and producer's surplus at the market equilibrium price.

(OR)

b) If the probability that an individual suffers a bad reaction from injection of a given serum is 0.001, determines the probability that out of 2,000 individuals (a) exactly 3, and (b) more than 2 individuals will suffer a bad reaction.
