MADURAI DT

QUARTERLY EXAM - SEPTEMBER - 2025

Class: XII

Mathematics

Maximum Marks: 90

Part - I

Time Allowed: 3.00 Hours

Note: i) All questions are compulsory. ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer. $20 \times 1 = 20$

Distance from the origin to the plane 3x - 6y + 2z + 7 = 0 is

(1)0

(2) 1

(3) 2

The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is

 $(1)\frac{4}{3}$ $(2)\frac{4}{\sqrt{3}}$ $(3)\frac{2}{\sqrt{2}}$ $(4)\frac{3}{2}$

If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then $9I - A = (1)A^{-1}$ (2) $\frac{A^{-1}}{2}$ (3) $3A^{-1}$ (4) $2A^{-1}$

The area of the triangle formed by the complex numbers z, iz and z + iz in the Argand's

 $(1)\frac{1}{2}|z|^2$ $(2)|z|^2$ $(3)\frac{3}{2}|z|^2$ $(4)2|z|^2$

If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ and $A(\text{adj } A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then k = 0

(1) 0 (2) $\sin \theta$ (3) $\cos \theta$ (4) 1

- In the case of cramer's rule which of the following are correct? 6.
 - (1) $\Delta = 0$ (2) $\Delta \neq 0$ (3) the system has unique solution
 - (4) the system has infinitely many solutions
- Which of the following are correct?

(1) $\arg(Z_1 + Z_2) = \arg(Z_1) + \arg(Z_2)(2)\arg(Z_1 - Z_2) = \arg(Z_1) - \arg(Z_2)$

 $(3)\arg(Z^n)=\arg(n^Z)$

(4) $\operatorname{arg}\left(\frac{Z_1}{Z_2}\right) = \operatorname{arg}(Z_1) - \operatorname{arg}(Z_2)$

If α , β and γ are the roots of $x^3 + px^2 + qx + r$, then $\sum_{\alpha=0}^{\infty} is$

(1) $-\frac{q}{r}$ (2) $-\frac{p}{r}$ (3) $\frac{q}{r}$ (4) $-\frac{q}{p}$

9. $\sin^{-1}\frac{3}{5}-\cos^{-1}\frac{12}{13}+\sec^{-1}\frac{5}{3}-\csc^{-1}\frac{13}{12}$ is equal to

(1) 2π (2) π (3) 0 (4) $\tan^{-1} \frac{12}{6\pi}$

10. If α and β are the roots of $x^2 + x + 1 = 0$, then $\alpha^{2020} + \beta^{2020}$ is

(1) -2 (2) -1

(3) 1 (4) 2

12-QMD-MAT EM -1

- 11. A zero of $x^3 + 64$ is

 (1) 0 (2) 4 (3) 4i (4) -4

 12. $\sin(\tan^{-1} x), |x| < 1$ is equal to

 (1) $\frac{x}{\sqrt{1-x^2}}$ (2) $\frac{1}{\sqrt{1-x^2}}$ (3) $\frac{1}{\sqrt{1+x^2}}$ (4) $\frac{x}{\sqrt{1+x^2}}$
- 13. If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive root, if and only if (1) $a \ge 0$ (2) a > 0 (3) a < 0 (4) $a \le 0$
- 14. If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to $(1) 2 \qquad (2) -1 \qquad (3) 1 \qquad (4) 0$
- 15. If y = mx + cis a tangent to the parabola $y^2 = 4ax$ then the point of contact is
- (1) $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$ (2) $\left(\frac{-a}{m^2}, \frac{2a}{m}\right)$ (3) $\left(\frac{a}{m^2}, \frac{-2a}{m}\right)$ (4) $\left(\frac{-a}{m^2}, \frac{-2a}{m}\right)$ 16. If the direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then
- (1) $c = \pm 3$ (2) $c = \pm \sqrt{3}$ (3) c > 0 (4) 0 < c < 1
- 17. If the coordinates at one end of a diameter of the circle $x^2 + y^2 8x 4y + c = 0$ are (11,2), the coordinates of the other end are (1) (-5,2) (2)(2,-5) (3) (5,-2) (4) (-2,5)
- 18. Which of the following are false, in the case of a plane passing through three points whose position vectors are \vec{a} , \vec{b} and \vec{c} ?
 - (1) $[\vec{r} \vec{a}\vec{b} \vec{a}\vec{c} \vec{a}] = 0$ (2) $[\vec{r} \vec{a}\vec{a} \vec{b}\vec{c} \vec{a}] = 0$ (3) $[\vec{r} \vec{a}\vec{b} \vec{a}\vec{a} \vec{c}] = 0$ (4) $[\vec{r} \vec{a}\vec{a} \vec{b}\vec{a} \vec{c}] = 0$
- 19. If $\cot^{-1} 2$ and $\cot^{-1} 3$ are two angles of a triangle, then the third angle is
- (1) $\frac{\pi}{4}$ (2) $\frac{3\pi}{4}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{3}$ 20. Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
 - (1) 2ab (2) ab (3) \sqrt{ab} (4) $\frac{a}{b}$

Part - II

Note : i) Answer any Seven questions. ii) Question number 30 is compulsory. 7X2 = 14

21. If $adj(A) = \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{bmatrix}$, find A^{-1} .

- 22. Find the rank of the following matrices by minor method: $\begin{bmatrix} -1 & 3 \\ 4 & -7 \\ 3 & -4 \end{bmatrix}$
- 23. If $z_1 = 3 2i$ and $z_2 = 6 + 4i$ find $\frac{z_1}{z_2}$ in the rectangular form.
- 24. Simplify $\left(\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}\right)^{18}$
- 25. Find a polynomial equation of minimum degree with rational coefficients, having $2 \sqrt{3}$ as a root.
- 26. Find the principal value of $tan^{-1}(\sqrt{3})$.
- 27. Find the general equation of the circle whose diameter is the line segment joining the points (-4, -2) and (1,1).
- 28. A particle acted upon by constant forces $2\hat{i} + 5\hat{j} + 6\hat{k}$ and $-\hat{i} 2\hat{j} \hat{k}$ is displaced from the point (4, -3, -2) to the point (6, 1, -3). Find the total work done by the forces.
- 29. Find the angle between the straight lines $\frac{x-4}{2} = \frac{y}{1} = \frac{z+1}{-2}$ and $\frac{x-1}{4} = \frac{y+1}{-4} = \frac{z-2}{2}$ and state whether they are parallel or perpendicular.
- 30. Find the length of half major axis of the Ellipse vertices A'(-3,0), and A(3,0).

Note: i) Answer any Seven questions. ii) Question number 40 is compulsory. $7 \times 3 = 21$

- 31. Solve the following system of linear equations, using matrix inversion method: 5x + 2y = 3, 3x + 2y = 5.
- 32. Solve the following systems of linear equations by Cramer's rule: $\frac{3}{x} + 2y = 12$, $\frac{2}{x} + 3y = 13$
- 33. Simplify $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3$ into rectangular form.
- 34. Show that the points $1, \frac{-1}{2} + i \frac{\sqrt{3}}{2}$, and $\frac{-1}{2} i \frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle.
- 35. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta \gamma}$ in terms of the coefficients.
- 36. For what values of x, the inequality $\frac{\pi}{2} < \cos^{-1}(3x 1) < \pi$ holds?
- 37. Find the value of $tan\left(cos^{-1}\left(\frac{1}{2}\right) sin^{-1}\left(-\frac{1}{2}\right)\right)$
- Prove that the point of intersection of the tangents at t_1 and t_2 on the Parabola $y^2 = 4ax$ is $[at_1t_2, a(t_1 + t_2)]$.
- 39. Find the magnitude and the direction cosines of the torque about the Point (2,0,-1) of a force $2\hat{\imath}+\hat{\jmath}-\hat{k}$ whose line of action passes through the origin.
- A0. Prove that $[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2 [\vec{a}, \vec{b}, \vec{c}]$

12-QMD-MATEM -3

Part - IV

Note: i) Answer all the questions.

7x5 = 35

5

41. a) Using vector method, prove that $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

(OR)

- b) Identify the type of conic and find centre, foci, vertices, and directrices of each of the following: $y^2 4y 8x + 12 = 0$
- 42. a) Verify $(AB)^{-1} = B^{-1}A^{-1}$ with $A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$.
 - b) Discuss the maximum possible number of positive and negative roots of the polynomial equation $9x^9 4x^8 + 4x^7 3x^6 + 2x^5 + x^3 + 7x^2 + 7x + 2 = 0$.
- 43. a) If $\vec{a} = 2\hat{i} + 3\hat{j} \hat{k}$, $\vec{b} = 3\hat{i} + 5\hat{j} + 2\hat{k}$, $\vec{c} = -\hat{i} 2\hat{j} + 3\hat{k}$, verify that $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c})\vec{b} (\vec{b} \cdot \vec{c})\vec{a}$.

(OR)

- b) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution.
- 44. a) Find the value of $\sin^{-1}\left(\sin\frac{5\pi}{9}\cos\frac{\pi}{9}+\cos\frac{5\pi}{9}\sin\frac{\pi}{9}\right)$. (OR)
 - b) If z = x + iy and $arg(\frac{z-i}{z+2}) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x 3y + 2 = 0$.
- 45. a) Solve: $tan^{-1}\left(\frac{x-1}{x-2}\right) + tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$. (OR)
 - b) On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away from the starting point. Find the angle of projection.
- 46. a) Solve the following system of linear equations, by Gaussian elimination method: 4x + 3y + 6z = 25, x + 5y + 7z = 13, 2x + 9y + z = 1.

(OR)

- b) Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (2,3,6) and parallel to the straight lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$ and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$.
- 47. a) Find the equation of the circle passing through the points (1,1), (2,-1), and (3,2).

(OR)

b) Solve the equation $z^3 + 27 = 0$

12-QMD-MAT EM -4