Ravi home tutions 12th Standard Physics

Total Marks: 970 Multiple Choice Question $314 \times 1 = 314$ Q1. The barrier potential of a silicon diode is approximately, _____. (a) 0.7 V (b) 0.3 V (c) 2.0 V (d) 2.2 VQ2.If a small amount of antimony (Sb) is added to germanium crystal,____. (a) it becomes a p-type semiconductor (b) the antimony becomes an acceptor atom (c) there will be more free electrons than hole in the semiconductor (d) its resistance is increased Q3.A forward biased diode is treated as _____ (a) An open switch with infinite resistance (b) A closed switch with a voltage drop of OV (c) A closed switch in series with a battery voltage of 0.7V (d) A closed switch in series with a small resistance and a battery Q4. If a positive half-wave rectified voltage is fed to a load resistor, for which part of a cycle there will be current flow through the load? (a) 0^{0} – 90^{0} (b) 90^{0} – 180^{0} (c) 0^{0} – 180^{0} (d) 0^{0} – 360^{0} Q5. The zener diode is primarily used as _____. (a) Rectifier (b) Amplifier (c) Oscillator (d) Voltage regulator Q6. The principle based on which a solar cell operates is____. (a) Diffusion (b) Recombination (c) Photovoltaic action (d) Carrier flow Q7. The light emitted in an LED is due to _____. (a) Recombination of charge carriers (b) Reflection of light due to lens action (c) Amplification of light falling at the junction (d) Large current capacity

Q8. When a transistor is fully switched on, it is said to be

(a) Shorted (b) Saturated (c) Cut-off (d) Open Q9. The specific characteristic of a common emitter amplifier is (a) High input resistance (b) Low power gain (c) Signal phase reversal (d) Low current gain Q10.To obtain sustained oscillation in an oscillator,____. (a) Feedback should be positive (b) Feedback factor must be unity (c) Phase shift must be 0 or 2π (d) All the above Q11.If the input to the NOT gate is A = 1011, its output is _____. (a) 0100 (b) 1000 (c) 1100 (d) 0011 Q12. The electrical series circuit in digital form is (a) AND (b) OR (c) NOR (d) NAND Q13. Which one of the following represents forward bias diode? (a) Q14. The given electrical network is equivalent to _____. (a) AND gate (b) OR gate (c) NOR gate (d) NOT gate Q15. The output of the following circuit is 1 when the input ABC is_ (b) 100 (c) 110 (d) 010 (a) 101 Q16. The output transducer of the communication system converts the radio signal into (a) Sound (b) Mechanical energy (c) Kinetic energy (d) None of the above Q17. The signal is affected by noise in a communication system

(a) At the transmitter (b) At the modulator (c) In the channel (d) At the receiver
Q18.The variation of frequency of carrier wave with respect to the amplitude of the modulating signal is called
(a) Amplitude modulation (b) Frequency modulation
(c) Phase modulation (d) Pulse width modulation
Q19.The internationally accepted frequency deviation for the purpose of FM broadcasts
(a) 75 kHz (b) 68 kHz (c) 80 kHz (d) 70 kHz
Q20.The frequency range of 3 MHz to 30 MHz is used for
(a) Ground wave propagation (b) Space wave propagation
(c) Sky wave propagation (d) Satellite communication
Q21.C, Si and Ge have same no of valence electrons. C is an insulator because energy required to take one electron out from .
(a) Si is more (b) C is more (c) Ge is more (d) C is less
Q22.By adding impurity in intrinsic semi conductor, p type semiconductor is made. Charge of these p type semiconductor is
(a) Trivalent, neutral (b) Pentaralent, neutral
(c) Pentavalent, positive (d) Trivalent, negative
Q23.Why can't we physically join p-type and n-type semiconductor directly to form a p-n junction?
(a) Inter-atomic spacing become less than 1 ${ m A}^{ m O}$
(b) p -type will repet N-type
(c) There will be discontinuity for the flowing charge carriers
(d) Semi-conducting properties will be lost
Q24.Which statement is incorrect regarding for p-n junction? (a) Donor atoms are depleted of their holes in junction
(b) No net charge exists far from junction
(c) Barrier potential V _B is generated
(d) Energy $V_{\rm B}$ is to be surrounted before any charge can flow across junction
Q25.The intrinsic semi-conductor has
(a) A finite resistance which does not change with temperature
(b) Infinite resistance which decreases with temperature
(c) Finite resistance which decreases with temperature

Q26. The behaviour of Ge as semi-conductor is due to width of
(a) conduction band being large (b) forbidden band being small (c) conduction band being small (d) forbidden band being small and narrow
Q27.Which of the following is not the advantage of PN junction diode over tube value? (a) Unlimited life (b) No warming-up time after switching (c) Large efficiency (d) Low consumption of power
Q28. The forward based diode is (a) (b) $\frac{1}{4v}$ $\frac{1}$
Q29.A current gain for, a transistor working as CB amplifier is 0.90. If emitter current is 10 mA, then base current is (a) 1mA (b) 2 mA (c) 0.1 mA (d) 0.2 mA Q30. For a transistor $\frac{I_C}{I_E}$ = 0.96, then CE current gain is
(a) 12 (b) 6 (c) 24 (d) 48
Q31.At 0 k temp, a N - type semi conductor (a) Does not haveany charge carriers (b) Has few holes but no free electrons (c) Few holes and few electrons (d) Has equal number of holes and electrons
Q32.In Si-crystal, impurity donor atom have valency (a) 2 (b) 3 (c) 4 (d) 5
Q33.A N-P-N transistor conducts when collector is and emitter is with respect to base. (a) positive, negative (b) positive, positive (c) negative, negative (d) negative, positive
Q34.A full wave rectifier is operating at 50 Hz, 220v the fundamental frequency of ripple will be (a) 50 Hz (b) 75 Hz (c) 110 Hz (d) 100 Hz

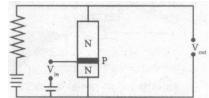
(d) Finite resistance which does not change with temperature

Q35.Reverse bias applied on a junction diode
(a) Raises the barrier potential
(b) Increases majority charge carrier current
(c) Lowers the potential barrier
(d) Increases the temperature of junction
Q36.Digital circuits can be made to be respective use of
(a) AND gate (b) OR gate (c) NOT gate (d) NAND gate
Q37.In the figure, the input is across A, and C output is across B and D. The output is (a) same as input (b) halfwave rectified (c) fullwave rectified (d) zero
Q38. The output current versus time curve of a rectifier is shown in the figure. The average value of the output current is
↑ Output current
seems to second.
Time
(a) 0 (b) $\frac{I_0}{2}$ (c) $\frac{2I_0}{\pi}$ (d) I_0
Q39.A sinusoidal voltage of peak value 200 volts is connected to the diode and resistor R in the circuit shown. If the diode is ideal, the r.m.s. voltage across R is volt.

Q40. For a transistor, in a common base configuration the alternating current gain is given by ______.

(a) $\left[\frac{\triangle I_C}{\triangle I_B}\right]_{V_c=constant}$ (b) $\left[\frac{\triangle I_B}{\triangle I_C}\right]_{V_c=constant}$ (c) $\left[\frac{\triangle I_C}{\triangle I_E}\right]_{V_c=constant}$ (d) $\left[\frac{\triangle I_E}{\triangle I_C}\right]_{V_c=constant}$

(a) 100 (b) $\frac{200}{\sqrt{2}}$ (c) 200 (d) 280

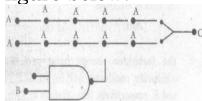

(a)
$$\left\lfloor \frac{\triangle I_C}{\triangle I_B} \right\rfloor_{V_c=constant}$$
 (b) $\left\lfloor \frac{\triangle I_B}{\triangle I_C} \right\rfloor_{V_c=constant}$ (c) $\left\lfloor \frac{\triangle I_C}{\triangle I_E} \right\rfloor_{V_c=constant}$ (d) $\left\lfloor \frac{\triangle I_E}{\triangle I_C} \right\rfloor_{V_c=constant}$

Q41.In an N-P-N transistor circuit, the emitter, collector, and base current are respectively I_E , $I_{C_{,}}$ and l_B . The relation between them

(a) $I_C EB$ (b) $I_B CE$ (c) $I_B > I_C > I_E$ (d) $I_B > I_C > I_E$
Q42. Assuming that the junction diode is ideal the current through the diode is mA. 100 Ω
Q43.The symbol represents (a) NOT gate (b) OR gate (c) AND gate (d) NOR gate
Q44. The combination of NAND gates here under are equivalent to
(a) OR gate and NOT gate (b) AND gate and OR gate (c) AND gate and NOT gate (d) OR gate and AND gate
Q45.How many NAND gates are used to form AND gate (a) 1 (b) 2 (c) 3 (d) 4
Q46.In an P.N.P transistor circuit, the collector current is 10 mA. If 90% of the electrons emitted reach the collector (a) I_E = 9mA (b) I_E = 10mA (c) I_B = 1mA (d) I_B = - 1mA
Q47.When a p-type semiconductor is heated? (a) Number of holes increases while that of electrons decreases (b) Number of electron increases while that of hole decreases (c) Number of electrons and holes remains same (d) Number of electrons and holes increases equally
Q48. The depletion layer in PN junction diode is caused by
(a) drift of holes (b) diffusion of impurity ions (c) diffusion of charge carriers (d) drift of electrons
Q49. The forbidden energy band gap in semi conductor, conductor and insulator are E_1 , E_2 and E_3 respectively. The relation among them is
(a) E_1 . $\langle E_2 \rangle E_3$ (b) $E_1 \rangle E_2 \rangle E_3$ (c) $E_1 \langle E_2 \rangle E_3$

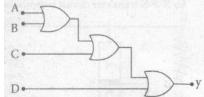
(d) $E_1 > E_2 < E_3$

Q50.An N-P-N transistor circuit is shown in the figure is


- (a) A common base circuit (b) A common emitter circuit
- (c) A common collector circuit (d) Oscillator circuit
- Q51.In a common emitter amplifier, output resistance is 5000 Ω and input resistance is 1000 Ω . If the peak value of signal voltage is 1 mV and β =100 than the peak value of output voltage is

(a) 0.1 V (b) 0.3 V (c) 0.2 V (d) 0.5 V

Q52. The Ac current gain of a transistor is 100. If the base current changes by 100 μ A. What is the charge in the collector current


(a) 20 mA (b) 30 mA (c) 10 mA (d) 10 μA

Q53. What is the output of the combination of the gates shown in the figure below?

(a) $A + \overline{A \cdot B}$ (b) $A + A \cdot B$ (c) $(A + B) \cdot \overline{(A \cdot B)}$ (d) $(A + B) \cdot \overline{(A \cdot B)}$

Q54. The expression of Y in the following circuit is _____

(a) AB + CD (b) A + BCD (c) A + B + C + D (d) A. B. C. D

Q55.Which of the following figure represents an ideal diode characteristics?

Q56.In the Ge sample, traces, of gallium is added as an impurity. The resultant sample would behave like_____.

(a) a conductor (b) a p -type semiconductor

(c) an N - type semiconductor (d) an insulator
Q57.A light emitting diode has a voltage drop of 2v across it when 10 mA current is passed. If this LED is to be operated with 6v battery the value of limiting resistor would be (a) 400 Ω (b) 4000 Ω (c) 40 k Ω (d) 300 Ω
Q58.NAND gate is (a) A Basic gate (b) Not a universal gate (c) A universal gate (d) Multipurpose gate
Q59.How will you increase the resistivity of Ge semi conductor? (a) on adding donar impurity (b) on adding acceptor impurity (c) on making UV light incident on Ge crystal (d) on decreasing the temperature
Q60.From the follwoing semi-conductor devices operates in forward bias only. (a) varactar diode (b) zener diode (c) light emitting diode (d) photo-diode
Q61.The frequency of output signal of LC oscillator circuit is 100 Hz with capacitance value 0.1 μ F. IF value of capacitance is taken as 0.2 μ F, the frequency of output signal (a) decreases by $\frac{1}{\sqrt{2}}$ (b) increases by $\frac{1}{\sqrt{2}}$ (c) decreases by $\frac{1}{2}$ (d) increases by $\frac{1}{2}$
Q62.In forward bias made, the P.N. junction diode resistance will
(a) infinity (b) zero (c) less (d) more
Q63.To obtain OR gate from NOR gate, you will need (a) one NOR gate (b) one NOT gate (c) two NOT gate (d) one OR gate
Q64.For Boolean identities match the pair
(i) \overline{A} (P) \overline{A} + \overline{B} (ii) $\overline{A + B}$ (Q) A.B (iii) $\overline{A \cdot B}$ (R) $\overline{A} \cdot \overline{B}$ (iv) A.(\overline{A} + B) (S) A (a) 1 - (S), 2 (P), 3 - (Q), 4 - (R) (b) 1 - (S), 2 (R), 3 - (Q), 4 - (P)
(c) 1 - (S), 2 (Q), 3 - (P), 4 - (R) (d) 1- (S), 2 (R), 3 - (P), 4 - (Q)
Q65.The input resistance is

(a) $1 \text{k} \Omega$ (b) 10Ω (c) $10 \text{k} \Omega$ (d) 100Ω
Q66.The current amplification factor is (a) 20 (b) 30 (c) 50 (d) 40
Q67.If a load of 6 $k\Omega$ is used, then the voltage gain of the amplifier is
(a) 100 (b) 200 (c) 300 (d) 400
Q68.An amplifier has voltage gain A_v = 1000. The voltage gain in dB is
(a) 20 dB (b) 30 dB (c) 3 dB (d) 60 dB
Q69.A potential barrier of 0.6 V exists across a P- N junction. If the depletion region is 1µm wide, what is the intensity of electric field in the region? (a) $4 \times 10^5 \text{ Vm}^{-1}$ (b) $5 \times 10^5 \text{ Vm}^{-1}$ (c) $6 \times 10^5 \text{ Vm}^{-1}$ (d) $2 \times 10^5 \text{ Vm}^{-1}$
Q70.A common - emitter amplifier has a voltage gain of 100, an input impendence of 100Ω and an output impedence of $200~\Omega$. The product of voltage gain and current gain is (a) $1000~$ (b) $3000~$ (c) $5000~$ (d) $500~$
Q71.Essential elements of a communication system are
(a) transmitter & receiver (b) receiver & communication channel (c) transmitter and communication channel (d) transmitter communication channel & receiver
Q72.The loss of strengh of a signal while propagating through a medium is known as
(a) modulation (b) absorption (c) transmission (d) Attenuation
Q73.The process of increasing the strength of a signal using an electric circuit is called (a) amplification (b) modulation (c) demodulation (d) transmission
Q74.Modulation is the process of superposing (a) low frequency audio signal on high frequency radio waves (b) low frequency radio signal on low frequency audio waves (c) high frequency radio signal on low frequency audio (d) high frequency audio signal on low frequency radio waves

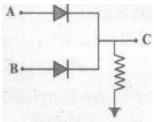
Q75.The device which is a combination of a receiver and a transmitter is
(a) Amplifier (b) Repeater (c) Transducer (d) Modulator
Q76.Large band width for higher data is achieved by using
(a) Large bandwidth for higher data is achieved (b) high frequency audio wave (c) low frequency carrier wave (d) low frequency audio wave
Q77.In a video signal for transmission of picture what value of bandwidth is used in communication system? (a) 2.4 MHz (b) 4:2 MHz (c) 24MHz (d) 42 MHz
Q78.Which of the following is an example of breadcast made of communication? (a) Radio (b) Television (c) Mobile (d) both (a) & (b)
Q79.The radio waves of frequency 30 MHz to 300 MHz belong to
(a) high frequency band (b) very high frequency band (c) ultra high frequency band (d) super high frequency band
Q80.For base station to mobile communication, the required frequency band is (a) 540 - 1600 KHz (b) 200 - 32 MHz (c) 840 - 935 MHz (d) 5.9 - 6.42 GHz
Q81.Ground wave have wavelength (a) less than that of sky waves (b) greater than that of sky wave (c) less than that of space waves (d) equal to that of space waves
Q82.The made of propagation used by short wave broadcast services is
(a) space wave (b) skywave (c) ground wave (d) both (a) & (c)
Q83.The strip zero in radio wave transmission is that range where
(a) there is no reception of either ground wave or skywave
(b) the reception of ground wave is maximum but sky wave is minimum
(c) the reception of ground wave is minimum but sky wave is maximum
(d) the reception of both ground wave and sky wave is maximum

Q84.FM broad cost is preferred over AM broadcast because
(a) It is less noisy (b) reproduction is of much better quality (c) it is more noisy (d) both (a) & (b)
Q85. The waves that are bent down by the ionosphere on are
(a) ground waves (b) surface waves (c) space waves (d) skywaves
Q86.A gound receiver in line of sight communication cannot receive direct waves due to
(a) its low frequency (b) curvature of each (c) its high intensity (d) smaller antenna
Q87.Which of the following modes is used for line of sight communication as well as satellite communication?
(a) Ground wave (b) Skywave (c) Space wave (d) All of these
Q88.Through which made of propagation the radio waves can be sent from one place to another
(a) ground wave propagation (b) Electric field
(c) space wave propagation (d) all of these
Q89.A transmitting antenna of height 240 m and the signals broadcast from this tower will be received by a line of sight communication at a distance of (Radius of the each = 6.4×10^6 m)
(a) 100 km (b) 110 km (c) 55 km (d) 120 km
Q90.In frequency modulation
(a) the amplitude of modulated wave varies as frequency
(b) the frequency of modulated wave varies as amplitute the frequency
(c) the amplitude of modulated wave varies as amplitute of carrier wave
(d) the frequency of modulated wave varies as frequency of modulating wave
Q91.A n-p-n transistor circuit has α = 0.985. If I_{C} = 9 mA than the value of I_{B} is
(a) 0.003 mA (b) 0.66 mA (c) 0.015 mA (d) 0.03 mA
Q92.For a transistor amplifier, the voltage gain
(a) remain constant for all frequencies

(b) is high at high and low frequencies and constant in the mid frequency range
(c) is low at high and low frequencies and constant in the mid- frequency range
(d) None of the above
Q93.Semi-conductor has phosphorous as impurity then it will have
(a) $n_e > n_h$ (b) $n_e < n_h$ (c) $n_e = n_h$ (d) $n_e = n_h = n_i$.
Q94.Zener diode is used as
(a) full wave rectifier (b) Amplifier (c) A.C. voltage regulator
(d) D.C. voltage regulator
Q95.Break down voltage of a diode is 5 V. By which effect this breakdown occurs in diode?
(a) only Avalanche effect (b) only Zener effect
(c) Avalanche or Zener effect (d) None of the above
Q96.When NPN transistor is used as an amplifier then
(a) electron moves from base to collector
(b) hole travels from emitter to base
(c) hole goes to emitter from base
(d) electron goes to base from collector
Q97.For gate, the output is 1 only when both input are '0' (a) AND (b) NAND (c) OF (d) NOR
Q98. How many free electrons does a p-type semiconductor contain? (a) Many (b) None (c) only those produced
(d) same number as holes by thermal energy
Q99.Most of the electron in the base of N-P-N transistor flow
(a) out of the base lead (b) into the collector (c) into the emitter (d) into the base supply
Q100. The depletion layer in the p-n junction region is caused by
(a) drift of holes (b) diffusion of charge carriers
(c) migration of impurity ions (d) drift of electrons
Q101.Audio signal cannot be transmitted because
(a) the signal has more noise
(b) the signal cannot be amplitude for distance communication

(c) the transmitting antenna length is very small to design
(d) the transmitting antenna length is very large and impracticable
Q102.In modulation process radio frequency wave is termed as
(a) modulated wave (b) modulating wave (c) carrier wave (d) none
Q103.Which is not an advantage of FM over AM? (a) better noise immunity is provided (b) lower bandwidth is required (c) the transmitted power is more useful (d) less modulating power is required
Q104.An EM wave travels in free space, only one of the following can happen to them (a) reflection (b) absorption (c) refraction (d) attenuation
Q105.The number of geostationary satellites needed for uninterepted global coverage is (a) 1 (b) 2 (c) 3 (d) 4
Q106.The purpose of oscillator in the AM transmitter is to
(a) provide modulating signal (b) provide carrier
(c) provide enough power to meet transmission system (d) none
Q107.AM is used for broadcasting because
(a) it is more noise immune than other modulation system
(b) it requires less transmitting power with other modulation system
(c) its circuit is simple
(d) it provides bandwidth for high frequency
Q108.The most commonly, employed modulation in satellite communication is the
(a) amplititude modulation (b) FM (c) phase modulation (d) all
Q109. The space wave propagation is utilized in (a) only television communication (b) can be reflected by ionosphere (c) can be reflected by mesosphere
(d) cannot be reflected by any layer of atmosphere

Q110.Optical fiber communication is generally preferred over general communication system because
(a) it has signal security (b) it is more efficient
(c) it cannot be jammed as easily as radio waves
(d) all of the above
Q111.In space communication, the sound waves can be sent from one place to another
(a) through space (b) through wires
(c) by super imposing it on undamped EM waves
(d) by super imposing it on damped EM waves
Q112.The radio waves can be sent from one place to another through propagation.
(a) ground wave (b) sky wave (c) space wave (d) all of above
Q113.The maximum range of ground or surface wave propagation depends on
(a) power of transmitter only
(b) the frequency of the radio waves only (c) none of them
(d) both of them
Q114.For long distance, shortwave radio broadcasting wave is used.
(a) ground (b) ionospheric (c) sky (d) direct
Q115.Broadcasting antennas are generally
(a) unidirectional (b) vertical (c) horizontal (d) none
Q116.An antenna is
(a) inductive (b) capacitive
(c) resistive above its resonance frequency (d) none
Q117.All medium wave signals received during day time use wave propagation.
(a) surface (b) space (c) sky (d) ionosphere
Q118.When the transmitting and receiving antennas are close to the ground, the type of radio-wave propagation is propagation.
(a) ground (b) space (c) sky (d) ionospheric
Q119.Radiowaves propagated through the troposphere of the earth are known as waves.
(a) space (b) surface (c) ground (d) sky


km from earth's surface is
(a) troposphere (b) stratosphere (c) ionosphere (d) atmosphere
Q121.In semiconductors at a room temperature
(a) the valence band is partially empty and the conduction band is partially filled
(b) the valence band is completely filled
(c) the valence band is completely filled and the conduction band is partially filled
(d) the conduction band is completely empty
Q122.To obtain a p-type germanium semiconductor, it must be doped with
(a) Indium (b) phosphorus (c) arsenic (d) antimony
Q123.The cause of potential barrier in a p-n diode is
(a) depletion of negative charges near the junction
(b) concentration of positive charges near the junction
(c) depletion of positive charges near the junction
(d) concentration of positive and negative charges near the junction
Q124.A p-n diode can be used as
(a) condenser (b) amplifier (c) rectifier (d) regulator
Q125.In forward bias the width of potential barrier in a p-n diode
(a) decreases (b) remain constant (c) increases
(d) first decreases and-then increases
Q126.Doping of a semiconductor generally changes resistivity as follows
(a) increases (b) decreases (c) does not alter (d) may increase
Q127.In a p-n junction diode
(a) the current in the reverse biased condition is generally very small
(b) the current in the reverse biased condition is small but the forward biased current is independent of the biased voltage
(c) the reverse biased current is strongly dependent on the applied bias voltage.
(d) the forward biased current is very small in comparison to reverse biased current
O128 Depletion layer consists of

(a) mobile ions (b) electrons (c) immobile ions (d) protons
Q129.To produce n-type semiconductor which impurity is added into the silicon?
(a) B (b) Al (c) P (d) Mg
Q130.Current gain in common emitter configuration is more than I because
(a) $IC < IE$ (b) $IC < IB$ (c) $IE > IB$ (d) $IC > IE$
Q131.Space wave propagation is suitable for waves having frequency above MHz.
(a) 13 (b) 30 (c) 40 (d) 100
Q132.Long distance radio communication employs wave propagation.
(a) ground (b) sky (c) space (d) surface
Q133.The radio waves after refraction from different part of ionosphere on reaching the earth are called as
(a) ground wave (b) sky waves (c) space waves (d) micro waves
Q134.Skip distance the shortest distance between
(a) the point of transmission and the point of reception
(b) the uplink and the downlink station
(c) the transmitter and the target (d) the receiver and the target
Q135.Through which mode of propagation, the radiowaves can be sent from one place to another?
(a) Ground wave propagation (b) Sky wave propagation
(c) Space wave propagation (d) All the above
Q136.During propagation of waves, where the electron density is large in ionosphere, the angle of refraction is (a) 49° (b) 90° (c) 67° (d) 180°
Q137.The ultra high frequency range is
(a) 300 MHz - 3GHz (b) 3 - 30 GHz (c) 30 - 300 GHz (d) 3 - 30 MHz
Q138.After the angle of refraction becomes 90° at the ionosphere, the wave travels
(a) faster (b) through space (c) in a straight line (d) towards the earth
O139 The audio frequency range is
ATTAC AND RECORDED A LANGE IS

(c) 20 Hz to 200,000 Hz (d) 20 Hz to 20,000 Hz
Q140.The process of superimposing the audio signal over the carrier wave is called (a) superposition (b) modulation (c) demodulation (d) extraction
Q141.The process of extracting the audio signal from the modulated wave is called (a) superposition (b) extraction (c) modulation (d) demodulation
Q142.The high frequency wave upon which the signal wave is superimposed is called (a) carrier wave (b) signal wave (c) modulated wave (d) superimposed wave
Q143.In AM, the amplitude of the carrier wave is changed in accordance with that of the of the signal wave. (a) frequency (b) intensity (c) phase (d) time
Q144.The strength and quality of the transmitted signal is dependent on (a) skip distance (b) modulation factor (c) geometry of the modulator (d) carrier frequency
Q145.For effective modulation, the degree of modulation should never exceed %. (a) 10 (b) 50 (c) 100 (d) 90
Q146.The component of the modulated wave, which has a greater frequency than that of the carrier is called (a) upper side band (b) middle side band (c) lower side band (d) stoke's band
Q147. The radiation of electrical energy is practicable only above
(a) 20 kHz (b) 200 MHz (c) 200 kHz (d) 20 Hz
Q148.Human voice / Music contains waves with a frequency range of
(a) 30 - 300 MHz (b) 3- 30 MHz (c) 300 - 3000 Hz (d) 3000 - 30000 Hz

(a) 20 Hz to 200 Hz (b) 20 Hz to 2000 Hz

Q149.Messages cannot be transmitted over long distances in transmission.
(a) FM (b) PM (c) AM (d) PCM
Q150.Low efficiency and small operating range are features of type of transmission.
(a) PM (b) AM (c) PCM (d) FM
Q151.Current gain common base configuration is less than I because
(a) $IE < IC$ (b) $IE < IB$ (c) $IB < IE$ (d) $IC < IE$
Q152.A NPN transistor conducts when
(a) both collector and emitter are positive with respect to the base
(b) collector is +ve and emitter is -ve with respect to the base
(c) collector is +ve and emitter is same potential with respect to the base
(d) both collector and emitter are -ve to the base
Q153.In a p-n junction (a) high potential at n side and low potential at p side
(b) high potential at p side and low potential at n side
(c) low potential at both p and n side
(d) high potential at both p and n side
Q154.Reverse bias applied to a junction diode is
(a) increases the potential barrier
(b) increases the majority carrier current
(c) lowers the potential barrier
(d) increases the minority carrier current
Q155.The device which converts electrical energy into light energy
(a) photo diode (b) LED (c) Transistor (d) Photocell
Q156.Zener diode is used for
(a) rectification (b) amplification (c) producing oscillation(d) stablisation
Q157.The output of the given circuit is

+
(a) NOR gate (b) OR gate (c) NAND (d) AND
Q158.The energy band gap is maximum in (a) metals (b) insulators (c) semiconductor (d) superconductors
Q159.A pure semiconductor behaves slightly as a conductor of
(a) low temperature (b) high temperature (c) room temperature (d) zero degree
Q160.If the distance between the conduction band and valence band is leV, then this combination is
(a) semiconductor (b) metal (c) insulator (d) conductor
Q161 type of modulation costless. (a) Frequency (b) Time (c) Amplitude (d) Phase
Q162.In FM, the of carrier wave is changed in accordance with the intensity of the signal. (a) amplitude (b) frequency (c) time of transmit (d) phase
Q163.In FM, frequency variation of the carrier wave depends upon the amplitude of the signal. (a) average (b) highest (c) constant (d) instantaneous
Q164.The frequency of a FM transmitter without signal input is called frequency.
(a) resting (b) maximum (c) signal (d) final
Q165.The change in the resting frequency of a FM transmitter is called
(a) frequency swing(b) frequency deviation(c) range offrequency(d) centre deviation
Q166.The total variation in frequency of a FM transmitter is called
(a) signal swing (b) carrier swing (c) shift (d) difference

Q167.FM signal has a resting frequency of 105 MHz and the highest frequency of 105.03 MHz when modulated by a signal. Then the

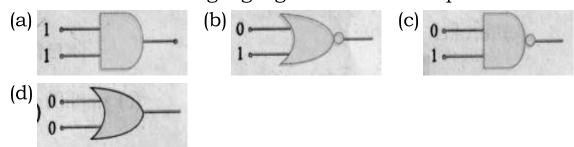
carrier swing is
(a) 0.03 MHz (b) 0.06 MHz (c) 0.03 kHz (d) 60 MHz
Q168.In an AM receiver, the local oscillator frequency is 2750 kHz. The tuned in station frequency is (a) 2905 kHz (b) 2295 kHz (c) 3055 kHz (d) 2250 kHz
(a) 2 900 KHZ (b) 22 90 KHZ (c) 3000 KHZ (d) 2200 KHZ
Q169.In FM, the centre frequency is allotted to the (a) transformer (b) transmitter (c) receiver (d) channel
Q170.The shortcomings of a straight radio receiver are overcome by a receiver.
(a) limiter (b) simple (c) super heterodyne (d) sample
Q171.Noise is a form of variation. (a) time (b) phase (c) amplitude (d) frequency
Q172.The centre of frequency is extremely stable in modulated wave.
(a) amplitude (b) frequency (c) phase (d) pulse-code
Q173.In a transmitter, the isolates the RF amplifier from the oscillator.
(a) amplifier (b) oscillator (c) buffer (d) transistor
Q174.Microphone converts energy into energy. (a) sound, electrical (b) electrical, magnetic (c) magnetic, sound (d) light, heat
Q175.While used at the transmitting end, the antenna converts
energy into energy. (a) magnetic, electromagnetic (b) electrical, magnetic
(c) electrical, electromagnetic (d) magnetic, electrical
Q176.The intermediate frequency is the oscillator frequency and radio frequency.
(a) product (b) sum of (c) difference between (d) integral of
Q177.The output of the Mixer of an AM receiver is always equal to Hz.
(a) 45 k (b) 455 k (c) 544 k (d) 1000 k
Q178.The ability to amplify weak signals is called (a) transmission (b) sensitivity (c) reception (d) resolution
Q179.The ability to select a particular wanted signal only and rejecting the unwanted signals is called

(a) sensitivity (b) buffer action (c) reception (d) selectivity
Q180.For FM receivers, the intermediate frequency is Hz. (a) 455 k (b) 10.7 M (c) 107 k (d) 45.5 M
Q181.In an insulator the energy gap between the conduction band and valence band is of the order of (a) 2MeV (b) 5eV (c) 1eV (d) 10 ⁻³ eV
Q182.In an good conductor the forbidden energy gap between the conduction band and valence band is of the order of .
(a) infinity (b) zero (c) narrow (d) wide
Q183.Diffusion of free electrons across the junction of an unbiased diode produces
(a) forward bias (b) reverse bias (c) depletion layer (d) break down
Q184.In which of the configuration of transistors the voltage gain is the highest?
(a) common collector (b) common base (c) common emitter (d) same in all the three
Q185.In which of the configurations of a transistor, the power gain is highest?
(a) common base (b) common emitter (c) common collector (d) same in all the three
Q186.How many AND gates are required to form NAND gate? (a) 1 (b) 2 (c) 3 (d) 4
Q187.Resistivity of a semiconductor at room temperature is in the range
(a) 10^{-2} and 10^4 Ω m (b) 10^2 to $10^{-4}\Omega$ m (c) 10^{-2} to $10^{-4}\Omega$ m (d) 10^2 to $10^4\Omega$ m
Q188.Resistance of a semiconductor is to temperature change. (a) directly proportional (b) indirectly proportional. (c) a constant (d) independent
Q189.A set of closely packed energy level is called (a) cluster (b) energy bands (c) constellation (d) energy pack

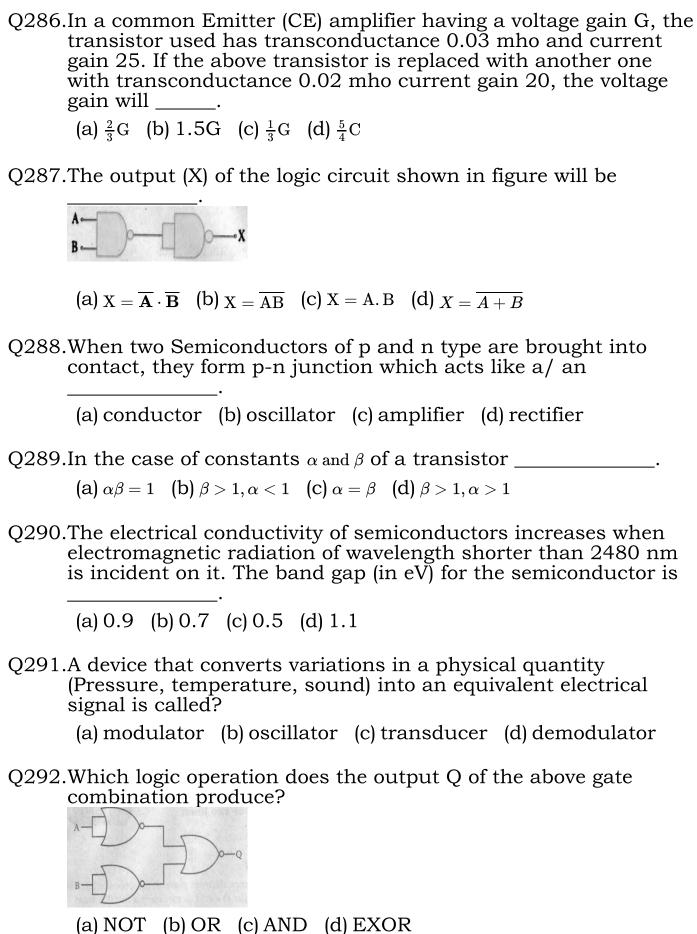
Q190.Atomic number of SI is (a) 14 (b) 12 (c) 16 (d) 18
Q191.Completely filled energy levels are called (a) core levels (b) compound levels (c) conduction levels (d) valence levels
Q192.Vacant energy levels are called (a) valence level (b) core level (c) conduction levels (d) compound level
Q193.Partially filled outermost level is called (a) valence level (b) core level (c) ground level (d) conduction level
Q194 electrons occupy the conduction band. (a) Ground state (b) Free (c) Bound (d) Valence
Q195.Energy gap between valence band and conduction band is called as the (a) forbidden energy gap (b) conduction band gap (c) valence band gap (d) filled band gap
Q196.The forbidden energy gap is largest in (a) conductor (b) metals (c) semiconductor (d) insulators
Q197.A hole is in charge (a) neutral (b) negative (c) positive (d) charge depends on the type of semiconductor
Q198.Pure semiconductors are called (a) extrinsic semiconductor (b) intrinsic semiconductor (c) simple semiconductor (d) charged semiconductor
Q199.Doped semiconductors are (a) extrinsic (b) intrinsic (c) simple (d) charged
Q200.When a pentavalent impurity is added to a pure semi conductor we get semiconductor.
(a) N-type (b) P-type (c) A-type (d) B-type
Q201.The speaker converts energy into energy. (a) electrical, sound (b) sound, electrical (c) light, sound (d) sound, mechanica

Q202.Resting frequency - 97 MHz. When modulated, it becomes 97.005 MHz. Find its carrier swing. (a) 10 kHz (b) 10 MHz (c) 1MHz (d) 50MHz
Q203.Resistance of any photosensitive material is to the intensity of light exposed (a) directly proportional (b) indirectly proportional (c) a constant (d) independent
Q204.The electron gun assembly contains a (a) CRO (b) cathode and a control grid (c) multimeter (d) power supply
Q205.Each small area of light or shade is called a (a) picture element (b) camera (c) image (d) electron grid
Q206.In most television sets, the scanning frequency isper second. (a) 250 (b) 25 (c) 2 (d) 5
Q207.In television, blanking pulse is applied to (a) horizontal plates (b) vertical plates (c) control grid (d) filament
Q208.In a television, the sound signals are modulated. (a) amplitude (b) frequency (c) phase (d) pulse
Q209.In a television, the picture signals are modulated. (a) amplitude (b) frequency (c) phase (d) pulse-code
Q210.Television is basically a system for reproducing (a) sound (b) still picture (c) moving picture (d) dark spots
Q211.The acronym for 'Radio Detection and Ranging' is known as
(a) RDR (b) RDAR (c) RADAR (d) DRR
Q212.RADAR works on the principle of (a) transformation (b) radio echos (c) polarization (d) diffraction
Q213.The electrical pulse sent by the RADAR travel with a speed ofm/s (a) 3×10^8 (b) 5×10^{12} (c) 8×10^3 (d) 10×10^9
O214 The transmitter - receiver switch is also called

(a) scanner (b) multiplexer (c) mixer (d) duplexer
Q215.The transmitter in a RADAR is a high power (a) cyclotron oscillator (b) magnetron oscillator (c) Hartley oscillator (d) simple harmonic oscillator
Q216.The echo signal of a RADAR is demodulated by a (a) decoder (b) transmitter (c) superhet receiver (d) rectifier
Q217.A continuously varying voltage is called voltage. (a) analog (b) digital (c) simultaneous (d) scanned
Q218.If a signal can take any value within a given range it issignal. (a) analog (b) scanned (c) simultaneous (d) digital
Q219.The greatest technical problem with an analog communication system is (a) noise (b) low speed (c) low range (d) accessibility
Q220.Digital system isin nature. (a) analog (b) binary (c) direct (d) continuous
Q221.The energy level just above the valence band is calledlevel
(a) donor (b) acceptor (c) ground (d) conduction
Q222.If half of the a.c. signal is rectified it is a (a) half wave (b) full wave (c) voltage (d) bridge
Q223.Efficiency of half wave rectifier is approximately (a) 60.4% (b) 40.6% (c) 46% (d) 60%
Q224.Efficiency of a bridge rectifier is approximately (a) 82.1% (b) 81.2% (c) 80.2% (d) 81.3%
Q225.To remove d.c. voltage fluctuations we use (a) filter circuits (b) sieve circuits (c) conductor circuits (d) rectifier circuits
Q226.Zener breakdown is mainly due to (a) collision (b) breaking of covalent bonds (c) doping (d) recombination
Q227.The colour of the emitted light on an LED depends on


(a) the material (b) applied voltage
(c) the geometry of the circuit (d) the type of biasing
Q228.In a junction transistor the emitter region is heavily doped since emitter has to supply to the base Zener diode acts as a
(a) minority carrier (b) majority carrier (c) acceptor ions (d) donor ions
Q229. The ratio between the base-emitter voltage to the corresponding change in base current is (a) input impedance (b) output impedance (c) total impedance (d) total current
Q230.In the output characteristics, the ohmic region is called (a) saturation region (b) cut-off region (c) active region (d) breakdown region
Q231.In order to draw a transfer characteristics of transistors is kept constant. (a) V_{CE} (b) I_{B} (c) I_{C} (d) V_{BE}
Q232.The operating point of an amplifier is also called as (a) base point (b) collector point (c) emitter point (d) quiescent point
Q233.The simplest and the best form of coupling when D.C signals are to be amplified is (a) RC coupling (b) transformer coupling (c) direct coupling (d) inductor coupling
Q234.Negative feedback the amplifier gain (a) reduces (b) increases (c) doesn't affect (d) fluctuates
Q235.In an oscillator 0° the electrostatic energy associated with the inductor is converted into (a) electromagnetic energy (b) gravitational energy (c) magnetic energy (d) nuclear energy
Q236.The circuit in which an inductor and a capacitor are connected in parallel is called as a (a) tank (b) series (c) inductor (d) capacitor
Q237.Basic logic gates are (a) NOT, AND, OR (b) NOR, AND, OR (c) NAND, AND, OR

(d) NAND, NOR, NOT
Q238.If the output is high for anyone of all of the inputs then it is gate
(a) a NOT (b) an AND (c) an OR (d) a NOR
Q239.When the output is an complement of the input it is
(a) NOT gate (b) AND gate (c) OR (d) NAND
Q240.The central region of the transistor is (a) base (b) emitter (c) collector (d) resistor
Q241. The abbreviation of the 'term 'Modulator and Demodulator' is
(a) model (b) modem (c) alternator (d) decoder
Q242.Digital signals are converted into analog signals using (a) FAX (b) Modem (c) Cable (d) Coaxial Cable
Q243 is the most often used wire material. (a) Copper (b) Aluminium (c) Sulphur (d) iron
Q244.A bundle of wires with a protective outer jacket is called
(a) transmitter (b) cable (c) coil (d) packet
Q245 wire is used between telephones and the central office (a) Flat (b) Multiconnector (c) Co-axial (d) Twisted pair
Q246.A multiconductor flat cable can have any number of wires in the range (a) 5 - 10 (b) 10 - 25 (c) 10-50 (d) 50 - 100
Q247.The principle used for 'transmission of light signals through optical fibre is (a) refraction (b) diffraction (c) polarisation (d) total internal reflection
Q248. The minimum difference in frequencies between the uplink and downlink transmission is (a) 200 kHz (b) 2 GHz (c) 2 MHz (d) 20 MHz
Q249.A satellite which appears to be stationary at a given spot above the equator is called a satellite. (a) geostationary (b) polar (c) elliptical (d) spherical


Q250.A geostationary satellite completes one revolution in
(a) 50 min (b) 50 days (c) 366 days (d) 24 hours
Q251.The distance of a geostationary satellite's orbit from the Earth is about
(a) 366 km (b) 108 km (c) 36×10^3 km (d) 30 m
Q252.In actual practice, the range of uplink frequencies used is GHz.
(a) 5.725 - 7.075 (b) 3.4 - 4.8 (c) 6 - 10 (d) 9 - 10
Q253.Mobile communication is easily established by communication.
(a) mechanical switches(b) telephone cables(c) satellite(d) optical fibres
Q254.For the purpose of coupling the transmitter and the receiver to the space link, We use
(a) amplifier (b) oscillator (c) antennas (d) FAX
Q255.In AM receiver, if 900 kHz station is tuned, then the local oscillator will have to produce a frequency of
(a) 600 kHz (b) 455 kHz (c) 10.7 MHz (d) 1355 kHz
Q256. The maximum carrier swing allowed in frequency modulation is
(a) 455 kHz (b) 10.7 kHz (c) 75 MHz (d) 150 kHz
Q257.The resting frequency of the FM transmitter is 98.5MHz. The allowed minimum and maximum frequency on either side of the center frequency are respectively
(a) 98.400 MHz and 98.600 MHz
(b) 98.450 MHz and 98.550 MHz
(c) 98.425 MHz and 98.575 MHz (d) 98.425 MHz and 98.575 MHz
Q258.Heavily doped region of a transistor is
(a) base (b) emitter (c) collectorresistor (d) resistor
Q259.Supplier of majority charge carriers in a transistor is
(a) emitter (b) base (c) collector (d) resistor
Q260.Acceptor of majority charge carriers in a transistor is
(a) emitter (b) base (c) collector (d) resistor.

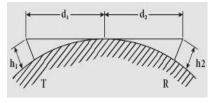
Q261.The collector-base junction of a transistor offers resistance to current
(a) low (b) high (c) zero (d) moderate
Q262.In PNP transistors, the direction of conventional current, when emitter-base junction is forward-biased is from
(a) base to emitter (b) emitter to base (c) collector to base (d) base to collector
Q263.ln NPN transistors, when the emitter-base junction is forward-biased, the direction of conventional current is from
(a) base to emitter (b) emitter to base (c) collector to base (d) base to collector
Q264.PNP transistor is like to PN junction diodes placed back-to-back.
(a) two (b) three (c) ten (d) five
Q265.Input characteristics of an NPN transistor in (CE mode) is drawn between
(a) I_B and V_{BE} (b) V_{BE} and V_{CE} (c) V_{CC} and V_{EE} (d) V_B and I_E
Q266.Output characteristics of an NPN, transistor in CE mode is drawn between
(a) I_C and V_{BE} (b) I_E and V_{CE} (c) I_B and V_{CE} (d) I_C and V_{CE}
Q267.In the output characteristics curve of an NPN transistor, is about to be a constant near knee point.
(a) I_C (b) I_B (c) I_E (d) V_{CC}
Q268. The region below the curve $I_B = 0$ in the output, characteristics of a transistor is
(a) saturation region (b) ohmic region (c) cut off region
(d) active region
Q269.For p-n junction, which statement is incorrect?
(a) Donor atoms are depleted of their holes in junction
(b) No net charge exists far from junction
(c) Barrier potential V_B is generated
(d) Energy $V_{\rm B}$ is to be surmounted before any charge flow across junction
Q270.A NPN transistor conducts when collector is and emitter is with respect to base.
(a) positive, negative (b) positive, positive (c) negative, negative

- (d) negative, positive Q271. Assuming the junction diode is ideal the current through the diode is mA. 100Ω (b) 10 (c) 20 (d) 30 (a) 1 Q272. The active junction area in a solar cell is _____ as we want _____ power. (a) small, more (b) small, small (c) large, more (d) large, small Q273. Type of material which emits white light in LED _____. (a) GaInN (b) SiC (c) AIGap (d) GaAsP Q274.A zener diode used as voltage regulator is connected i) in forward bias ii) in reverse bias iii) in parallel with load iv) in series with load (a) (i) and (ii) are correct (b) (ii) and (iii) are correct (c) only (i) is correct (d) only (iv) is correct. Q275. The boolean equation for the circuit is _____ (a) $Y = \overline{A} \cdot B + C$ (b) $Y = \overline{A} \cdot (B + C)$ (c) $Y = \overline{A} \cdot (\overline{B} + \overline{C})$ (d) $Y = \overline{A} \cdot (B + \overline{(C)})$ Q276.An NPN transistor circuit has $\alpha = 0.996$.. If $I_C = 9$ mA then the value of I_B is _____.
 - (a) 0.003 mA (b) 0.66 mA (c) 0.015 mA (d) 0.03 mA
- Q277. Which of the following logic gate will have output 1?

Q278. The flow of valence electrons to the left means that holds are flowing
(a) Left (b) Right (c) Either way (d) None
Q279.What kind of device is a diode? (a) Bilateral (b) Linear (c) Nonlinear (d) UniPolar
Q280.The lord-current is approximately constant when a zener diode is
(a) forward biased(c) operating in break down region(d) unbiased
Q281.When source voltage increases in a Zener diode, which of these currents remains approximately constant?
(a) Series current (b) Zener current (c) Load current(d) Total current
Q282.In a transistor, the base is (a) an insulator (b) a conductor of low resistance (c) a conductor of high resistance (d) an extrinsic semiconductor
Q283.In a CE transistor amplifier, the audio signal voltage across the collector resistance of $2k\Omega$ is 2Y. If the base resistance is $1k\Omega$ and the current amplification of the transistor is 100, the input signal voltage is (a) 01 V (b) 1.0 V (c) 4 mV (d) 10m V
Q284.The barrier potential of a p-n junction depends on i) type of semiconductor material ii) amount of doping iii) temperature. Which one of the following is correct? (a) (i) and (ii) only (b) (ii) only (c) (ii) and (iii) only (d) (i) (ii) and (iii)
Q285.In a n-type semiconductor, which of the following statement is true?
(a) Electrons are majority carriers and trivalent atoms are dopants
(b) Electrons are minority carriers and pentavalent atoms are dopants.
(c) Holes are minority carriers and pentavalent atoms are dopants
(d) Holes are majority carriers and trivalent atoms are dopants.

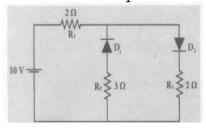
Q293.Blue colour LED is made up of _____ (a) SiC (b) AIGaP (c) AaAGaP (d) GaInN

Q294. The current gain (β) of a transistor in common emitter mode is 40. To change the collector current by 160 mA at constant VCE, the necessary change in the base current is _____.


(a) 0.2mA (b) $4 \mu \text{A}$ (c) 4 mA (d) 40 mA
Q295.In an unbiased p-n junction, the majority charge carriers (that is, holes) in the p-region diffuse into n-region because of
(a) the potential difference across the p-n junction
(b) the higher hole concentration in p-region than that in n-region
(c) the attraction of free electrons of n-region
(d) the higher concentration of electrons in the n-region than that in the p-region
Q296.Audio frequency range is
(a) 200 Hz-2000 Hz (b) 20 Hz - 2kHz (c) 20kHz - 20000kHz (d) 200Hz - 200kHz
Q297.In amplitude modulation
(a) amplitude of the base band signal only changes.
(b) amplitude of the carrier signal only changes
(c) amplitude of both base band signal and carrier signal change.
(d) amplitude and frequency of the carrier signal change.
Q298.The resting frequency is the frequency of the
(a) carrier frequency when there is no input signal.
(b) carrier frequency when the amplitude of the input signal is maximum.
(c) base band signal when the value of the carrier frequency is zero
(d) baseband signal when the value of caffLet frequency is equato to baseband signal frequency
Q299.Compressions and rarefactions occur in
(a) frequency modulated wave (b) phase-modulated wave
(c) amplitude modulated wave (d) both (a) and (b)
Q300.The range of propagation for the antenna of height 2m is (Radius of earth is 6400 km)
(a) 800m (b) 1600m (c) 16km (d) 8km
Q301.Which is not true with respect to skywave propagation?
(a) It is used for short wave propagation
(b) ionosphere acts as a reflecting surface
(c) The frequency range of EM waves used is 3 to 30MHz
(d) In skip zone, ground wave alone is received

Q302.In sky wave propagation the radio waves are sent back to earth. It is due to
(a) reflection (b) refraction (c) scattering
(d) total internal reflection
Q303.The frequency range of 30MHz to 400GHz is used for
(a) Satellite communication (b) Ground wave propagation (c) Space wave propagation (d) Sky wave propagation
Q304.In satellite communication system the uplink and downlink frequency bands are respectively, (a) 6GHz, 4 GHz (b) 12 GHz, 6GHz (c) 4GHz, 6GHz (d) 6GHz, 12GHz
Q305.Cellular phones use radio-waves in band. (a) long wave (b) short wave (c) medium wave
(d) ultra high frequency
Q306.The signal is affected by noise in a communication system
(a) at the modulator (b) in the channel (c) at the receiver (d) at the transmitter
Q307.The height of the transmitting and receiving antenna must be a multiple of
(a) 2λ (b) $\lambda/4$ (c) $\lambda/2$ (d) 4λ
Q308.In space wave propagation, the range of coverage of the propagation depends on the height 9(h) of the antenna given by the equation (a) $\sqrt{2\mathrm{Rh}}$ (b) $\sqrt{\frac{\mathrm{Rh}}{2}}$ (c) $\sqrt{2R^2h}$ (d) $\frac{\mathrm{h}}{2\mathrm{R}}$
Q309.If the input to the NOT gate is A = 0011, its output is (a) 0100 (b) 1000 (c) 1100 (d) 0011
Q310.The value of forbidden energy gap for Si at room temperature is: (a) $1.1~V~$ (b) $0.7~eV~$ (c) $1.1~eV~$ (d) $0.7~V~$
Q311.At 0 K, n - type semi-conductor: (a) does not have any charge carriers (b) has few holes but no free electrons (c) few holes and few electrons (d) has equal number of holes and electrons

Q312.Consider an ideal junction diode. Find the value of current flowing through AB is


$$^{A}_{+3}$$
 $\stackrel{1k\Omega}{\overline{\hspace{1cm}}}$ $\stackrel{B}{\overline{\hspace{1cm}}}$

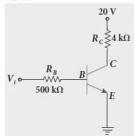
- (a) 10 mA (b) 20 mA (c) 15 mA (d) 11 mA
- Q313.Which of the following statement is correct for transistor LC oscillator circuit?
 - (a) It works with negative feedback
 - (b) The phase difference between output and input signal is π radian
 - (c) To start oscillation external signal is required
 - (d) The frequency of output signal is independent of the components used in feedback circuit
- Q314. The dopant to be added with a pure Germanium crystal to form a n type semiconductor is _____.
 - (a) Boron (b) Phosphorous (c) Aluminium (d) Indium
- 2 Marks $124 \times 2 = 248$
- Q315.A transmitting antenna has a height of 40 m and the height of the receiving antenna is 30 m. What is the maximum distance between them for line-of-sight communication? The radius of the earth is 6.4×10^6 m.

- Q316. Give the factors that are responsible for transmission impairments.
- Q317.Explain centre frequency or resting frequency in frequency modulation.
- Q318.What does RADAR stand for?
- Q319.Define electron motion in a semiconductor.
- Q320.Distinguish between intrinsic and extrinsic semiconductors.
- Q321. What do you mean by doping?

- Q322.A diode is called as a unidirectional device. Explain.
- Q323. What do you mean by leakage current in a diode?
- Q324.Draw the input and output waveform of a full wave rectifier.
- Q325.Distinguish between avalanche breakdown and Zener breakdown.
- Q326.Explain the current flow in a NPN transistor.
- Q327.What is the phase relationship between the AC input and output voltages in a common emitter amplifier? What is the reason for the phase reversal?
- Q328.Explain the need for a feedback circuit in a transistor oscillator.
- Q329. State De Morgan's first and second theorems
- Q330.The given circuit has two ideal diodes connected as shown in figure below. Calculate the current flowing through the resistance R₁.

Q331.An ideal diode and a 5 Ω resistor are connected in series with a 15 V power supply as shown in figure below. Calculate the current that flows through the diode.

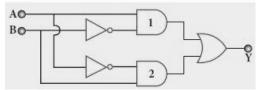
Q332.A silicon diode is connected with $1k\Omega$ resistor as shown. Find the value of current flowing through AB is



Q333.Determine the wavelength of light emitted from LED which is made up of GaAsP semiconductor whose forbidden energy gap


is 1.875 eV. Mention the colour of the light emitted (Take $h = 6.6 \times 10^{-34} \text{ Js}$).

Q334.In a transistor connected in the common base configuration, α = 0.95, I_E = 1 mA. Calculate the values of I_C and I_B .


Q335.In the circuit shown in the figure, the input voltage V_i is 20 V, V_{BE} = 0 V, and V_{CE} = 0 V. What are the values of I_B , I_C , β ?

Q336.What is the output Y in the following circuit, when all the three inputs A, B, and C are first 0 and then 1?

Q337.In the combination of the following gates, write the Boolean equation for output Y in terms of inputs A and B.

Q338.Prove the Boolean identity AC + ABC = AC and give its circuit description.

Q339.Define energy band

Q340.Define conduction band.

Q341.What is forbidden energy gap?

Q342. What is barrier potential?

Q343.Define bias voltage.

Q344. Define forward bias.

Q345.Define Reverse bias.

```
Q346. What is forward V-I characteristics?
Q347.What is rectification?
Q348. What is meant by efficiency (\eta)?
Q349.Define Zener effect
Q350. Mention any three application Zener diode.
Q351.Mention any three LED application.
Q352.Define photo diode.
Q353.Define photovoltaic effect.
Q354. Mention the application of a oscillators
Q355. What is meant by biasing? Mention its types.
Q356. What is called reverse saturation current?
Q357.Explain knee voltage
Q358. Define internal field emission or field ionization.
Q359. What is called output resistance?
Q360. What is called logical operators?
Q361. What is called logical variables?
O362. What is conduction band?
Q363.Define depletion region.
Q364. What is Breakdown voltage?
Q365.Write the advantages of PM?
Q366.Define Bandwidth.
```

Q367.Define bandwidth of transmission system.
Q368.What do you mean by skip distance?
Q369.Write the demerits of fiber optic communication?
Q370.What is mobile communication?
Q371.Write the application of ICT?
Q372.What do you mean by communication?
Q373.What is transducer?
Q374.Write the function of Repeater.
Q375.Why ground wave propagation is not suitable for high frequency?
Q376.Why sky waves are not used in the transmission of T.V. signals?
Q377.Greater the height of a TV transmitting antenna. Explain
Q378.What is modulated wave?
Q379.Which modulation is more advantageous? AM or FM? Why?
Q380.What do you mean by noise in communication?
Q381.What are carrier waves?
Q382.Define forbidden energy gap.
Q383.Why is temperature co-efficient of resistance negative for semiconductor?
Q384. Give the Barkhausen conditions for sustained oscillations.
Q385.What are logic gates?

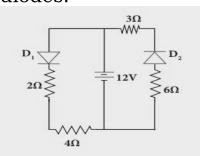
Q386.Write a short note on diffusion current across p - n junction.

Q387. Why can't we interchange the emitter and collector even though they are made up of the same type of semiconductor material?

Q388. Why are NOR and NAND gates called universal gates?

Q389.Define barrier potential.

Q390.List the applications of light emitting diode.


Q391. Give the principle of solar cells.

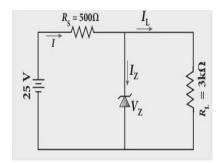
Q392. What is an integrated circuit?

Q393.What is modulation?

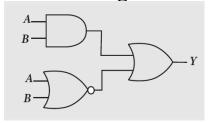
Q394. Give applications of RADAR.

Q395.Determine the current flowing through 3Ω and 4Ω resistors of the circuit given below. Assume that diodes D_1 and D_2 are ideal diodes.

Q396.Prove the following Boolean expressions using the laws and theorems of Boolean algebra.


(i)
$$(A + B)(A + \bar{B}) = A$$

(ii)
$$A(\bar{A}+B)=AB$$


$$(iii)$$
 $(A + B)$ $(A + C) = A + BC$

Q397. Verify the given Boolean equation $A + \bar{A}B = A + B$ using truth table.

Q398.In the given figure of a voltage regulator, a Zener diode of breakdown voltage 15V is employed. Determine the current through the load resistance, the total current and the current through the diode. Use diode approximation.

Q399.Write down Boolean equation for the output Y of the given circuit and give its truth table.

Q400. What do you mean by forbidden energy gap?

Q401.What is energy bond?

Q402. What is meant by barrier potential?

Q403. Define Biasing a diode and bias voltage

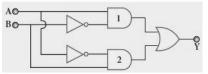
Q404. What is threshold voltage or cut - in voltage or knee voltage?

Q405.Define Rectification

Q406.Define Efficiency

Q407.What is Zener effect?

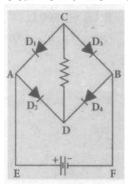
Q408. What are the applications of Zener diode?

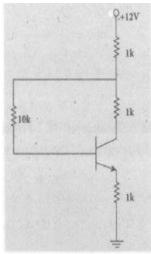

Q409. What are the uses of optoelectronic devices?

Q410.What is an LED? Draw the circuit symbol of it.

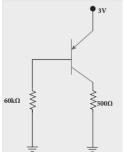
Q411.Write the applications of an LED

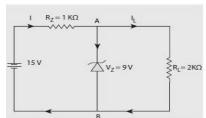
Q412. What is solar cell? Write its application?

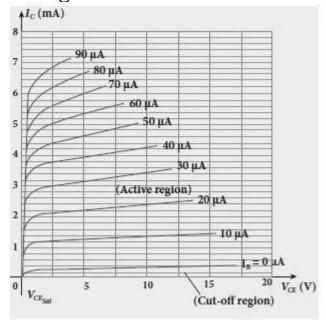

- Q413.Draw the schematic diagram of NPN transistor and PNP transistor
- Q414.Draw the circuit symbol of NPN transistor in common emitter configuration
- Q415. Define forward current gain (a_{de}) of a transistor
- Q416. Which are very important for the effective use of transistors in circuits?
- Q417.Define forward current gain in a current transfer characteristics of transistor in CE mode
- Q418.What is the relationship between α and β ?
- Q419.Define Amplification of amplifier and what are called as multistage amplifiers?
- Q420.What is an Oscillator?
- Q421.State the Barkhausen conditions for sustained oscillations
- Q422.In the combination of the following gates, write the Boolean equation for output Y in terms of inputs A and B.

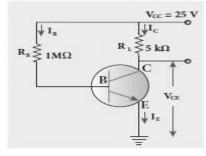

- Q423. What are the application of oscillators?
- Q424. What are main advantages of IC's over ordinary circuits?
- Q425. What is the use of repecaters in communication system?
- Q426.What is skip zone?
- Q427. What is the necessity of having modulation?
- Q428. What is amplitude modulation?
- Q429. What is frequency modulation?
- Q430.What are the advantages of FM over AM?

- Q431.Despite some limitations, AM broadcasting is widely used. Why? [Limitations of FM]
- Q432. What is phase modulation?
- Q433.What is transducer?
- Q434. What is base band signal?
- Q435.What is bandwidth?
- Q436. What are the three modes of propagation, Mention the frequency range.
- Q437.What is line of sight [LOS] communication?
- Q438. Write the merits and demerits of optical Fibre communication.
- 3 Marks $56 \times 3 = 168$
- Q439.Distinguish between wireline and wireless communication? Specify the range of electromagnetic waves in which it is used.
- Q440. What do you mean by Internet of Things?
- Q441. How electron-hole pairs are created in a semiconductor material?
- Q442.Discuss the biasing polarities in an NPN and PNP transistors
- Q443.Write a note on photodiode.

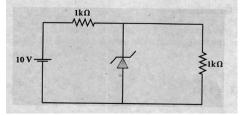

Q444. Four silicon diodes and a 10 Ω resistor are connected as shown in figure below. Each diode has a resistance of 1Ω . Find the current flows through the 10Ω resistor.


Q445.A transistor having α = 0.99 and V_{BE} = 0.7V, is connected in the common-cmiitter configuration as shown in figure. If the transister is in saturation region, find the value of the collector current.

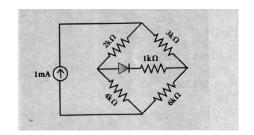

Q446.In the circuit shown in the figure, the BJT has a current gain (β) of 50. For an emitter-base voltage V_{EB} = 600 mV, calculate the emitter-collector voltage V_{EC} (in volts).


Q447. Find the current through the Zener diode when the load resistance is $2 \text{ k}\Omega$. Use diode approximation.

Q448. The output characteristics of a transistor connected in common emitter mode is shown in the figure. Determine the value of IC when V_{CE} = 15 V. Also determine the value of I_{C} when V_{CE} is changed to 10 V



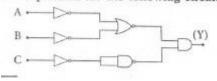
Q449. The current gain of a common emitter transistor circuit shown in figure is 120. Draw the DC load line and mark the Q point on it. (V_{BE} to be ignored).



- Q450.Calculate the range of the variable capacitor that is to be used in a tuned-collector oscillator which has a fixed inductance of 150 µH. The frequency band is from 500 kHz to 1500 kHz.
- Q451. Give the Schematic representation of valence band, conduction band, and forbidden energy gap and draw energy band structure of
 - (a) Insulators
 - (b) Semiconductors
 - (c) Metals?
- Q452. What is electronics?
- Q453. What are the advantages and Limitations of FM?
- Q454. Write the limitations of AM.

- Q455.What are the advantages of FM
- Q456.Write the limitations of FM.
- Q457. What are the application of satellite communication?
- Q458. Write the applications of internet.
- Q459. Why space wave propagation is limited upto small distance over earth's surface?
- Q460. Explain why TV transmission towers made high.
- Q461.What does the term LOS communication mean? Name the types of waves that are used for this communication. What is the range of their frequency?
- Q462. Why ground wave cannot be used for long distance communication using high frequency?
- Q463.List out the advantages and limitations of frequency modulation.
- Q464. What is meant of oscillator? Explain its types.
- Q465.A transistor is connected in CE configuration the voltage drop across the load resistance (R_c) $3k\Omega$ is 6v. Find the base current. The current gain α of the transistor is 0.97
- Q466.Determine the minimum value of current gain β required to put the transistor in saturation when $V_{\rm in}=+5$ V, Assume $V_{BE}($ sat $)=0.8V, V_{CE}($ sat)=0.2V
- Q467.In the circuit shows below, the Zener diode is ideal and zener voltage is 6V. What is the output voltage V_0 (in Volts).

Q468. The diode in the circuit given below has V_{oN} = 0.7V but ideal otherwise. What is the current (in mA) in the 4 k Ω resistors?

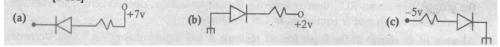


- Q469.Assuming V $_{CEsat}$ = 0.2 V and β = 50, find the minimum base current (I_B) required to drive the transistor given in the figure to saturation.
- Q470.Simplify the Boolean identify AC + ABC = AC

Q471.Simplify
$$Y = A \cdot \overline{B} + AB + BC + CA$$

- Q472. Show in diagram, the skip distance and the skip zone.
- Q473. Write a short note of the operating point of a transistor.
- Q474. What are two different types of signals used in electronics and explain them.
- Q475. What are main advantages of IC% over ordinary circuits?
- Q476. What do you mean by Internet of Things?
- Q477.Draw the wave forms during amplitude modulation.
- Q478. Give the waveforms during frequency modulation?
- Q479. Explain the parts and functions of a transmitter.
- Q480.Briefly explain the function of a receiver.
- Q481. What is output transducer? Give Examples.
- Q482. What is attenuation and how it can be reduced?
- Q483.In sky wave propagation why EM waves are transmitted at a critical angle?
- Q484.What is range?

- Q485. What is satellite communication?
- Q486.Calculate the range of the communication if the height of the transmitting antenna is 7.2 m. Radius of the carth is 6.4 x10⁶ m.
- Q487. How mobile communication is different from other communications?
- Q488.Briefly explain about internet.
- Q489.Simplify the Boolean identity: AC+ABC = AC
- Q490.A transmitting antenna has a height of 100 m. Find its range of propagation. The radius or the earth is 6.4×10^6 m.
- Q491.Write the output (Y) Boolean expression for the following circuit with inputs A, B and C.


- Q492.Sketch the static characteristics of a common emitter transistor and bring out the essential features of input characteristics.
- Q493.Sketch the static characteristics of a common emitter transistor and bring out the essential features of output characteristics.
- Q494.state and prove demorgan first theorem with diagram

5 Marks $40 \times 5 = 200$

- Q495.Explain the ampitude modulation with necessary diagrams.
- Q496.Explain the basic elements of communication system with the necessary block diagram.
- Q497.Explain the ground wave propagation and space wave propagation of electromagnetic waves through space.
- Q498. What do you know about GPS? Write a few applications of GPS.
- Q499. Give the applications of ICT in mining and agriculture sectors.

- Q500.Modulation helps to reduce the antenna size in wireless communication Explain
- Q501. Fiber optic communication is gaining popularity among the various transmission media -justify.
- Q502. Give circuit symbol, logical operation, truth table, and Boolean expression of
 - i) AND gate
 - ii) OR gate
 - iii) NOT gate
 - iv) NAND gate
 - v) NOR gate and
 - vi) EX-OR gate.
- Q503.Elucidate the formation of a N -type and P-type semiconductors.
- Q504.Explain the formation of depletion region and barrier potential in PN junction diode.
- Q505.Draw the circuit diagram of a half-wave rectifier and explain its working.
- Q506.Explain the construction and working of a full wave rectifier
- Q507. What is an LED? Give the principle of its operation with a diagram.
- Q508.Sketch the static characteristics of a common emitter transistor and bring out the essential features of input and output characteristics.
- Q509.Describe the function of a transistor as an amplifier with the neat circuit diagram. Sketch the input and output wave forms.
- Q510. Transistor functions as a switch. Explain.
- Q511.State Boolean laws. Elucidate how they are used to simplify Boolean expressions with suitable example.
- Q512. State and prove De Morgan's first and second theorem.
- Q513.Explain the working principle of a solar cell. Mention its applications.

- Q514. How does the change in temperature and application of electric field affect the behavior of materials and write the range of resistivity for each materials.
- Q515.Explain and classify transistor as an oscillator.
- Q516.Explain current transfer characteristics.
- Q517.Write any two distinguishing features between Insulators, Metals and semiconductors and insulators an the basis of energy band diagrams.
- Q518.For a BJT, the common base current gain α = 0.98 and the collector base junction reverse bias saturation I_{CU} = 0.6 μ A. This BJT is connected in the common emitter mode and operated in the active region with a base drive current I_D = 20 μ A. The collector current I_C for this mode of operating is
- Q519. For a BJT circuit shown, assume that the ' β ' of the transistor is very large and V_{BE} = 0.7 V. The mode of operation.
- Q520. What is RADAR? Explain its function. State its applications
- Q521. Write the applications of mobile communication.
- Q522. What is meant by satellite communication? Give its applications.
- Q523. Elucidate the formation of n-type extrinsic semiconductors.
- Q524.Draw the block diagram of transistor oscillators and explain it. (or) Explain the working of the transistor as on oscillator.
- Q525. Calculate the voltage of resistors $R_{\rm B}$ in the circuit shown to put $V_{\rm CE}$ at 3.0 V.
- Q526.What is a solar cell? Draw the cross-sectional view of a solar cell and explain its consumption and working. Write a note on solar arrays.
- Q527.In the following diagrams, indicate which of the diodes are forward biased and which reverse biased?

Q529. Explain how zener diode act as a voltage regulator. Q530.Explain the formation of PN junction diode. Discuss its V-I characteristics. Q531. What is meant of oscillator? Explain its types. Q532. What is modulation? Explain the types of modulation with necessary diagrams. Q533. What is RADAR? Explain its function. State its applications. Q534. Explain the three modes of propagation of electromagnetic waves through space. Match the following $16 \times 1 = 16$ Q535.Oscillators Q536.LED Q537.Internal field emissin Q538.Dopants Q539.Hole Q540.n-type semiconductor Q541. Valence orbitals Q542. Reverse saturation current Q543.Carrier signal Q544.Baseband signal Q545.Centre frequency

Q528.What is zener diode? Explain the V - I characteristic of zener

diode.

Q546.Wireline communication

Q547. Weather satellites

Q548.Communication satellites

Q549. Navigation satellites

Q550. Fibre optic communication

Assertion and reason

 $4 \times 2 = 8$

Q551. **Assertion:** Television signals are received through sky-wave propagation.

Reason: The ionosphere reflects electromagnetic waves of frequencies greater then a certain critical frequency.

Codes:

- (a) Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (b) Assertion and Reason are true but Reason is the false explanation of the Assertion.
- (c) Assertion is true but Reason is false.
- (d) Assertion is false but Reason is false
- Q552. **Assertion:** Short wave bands are used for the transmission of radio waves to a large distance

Reason: Short waves are reflected by the ionosphere.

Codes:

- (a) Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (b) Assertion and Reason are true but Reason is the false explanation of the Assertion.
- (c) Assertion is true but Reason is false.
- (d) Assertion is false but Reason is false
- Q553. **Assertion**: A dish antenna is highly directional.

Reason: This is because a dipole antenna is omni directional. **Codes**:

- (a) Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (b) Assertion and Reason are true but Reason is the false explanation of the Assertion.
- (c) Assertion is true but Reason is false.
- (d) Assertion is false but Reason is false
- Q554.**Assertion:** Base current (I_B) decreases and in turn increases the collector current.

Reason: Input signal (V_S) decreases the forward voltage across the emitter-base.

Codes:

- (a) Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- (b) Assertion and Reason are true but Reason is the false explanation of the Assertion.
- (c) Assertion is true but Reason is false.
- (d) Assertion is false but Reason is true.

Find out the wrong pair

 $4 \times 2 = 8$

- Q555.(a) Ground wave propagation Surface waves
 - (b) Sky wave propagation Antenna
 - (c) Space wave propagation 50 MHz
 - (d) Skip distance No reception
- Q556.(a) Fibre optic cables Date speed of 1 Gbps
 - (b) Satellite communication Radio repeater in sky
 - (c) Oscillator- Sinusoidal wave
 - (d) Transmitting antenna 5 x 108 ms⁻¹

Q557.(a) ENIAC World's first computer

(b) Energy levels Electron volts

(c) Bipolar junction Bardeen

(d) Reverse saturation current I_R

O558.(a) Blue SiC

- (b) Green AlGap
- (c) Red GiP
- (d) White light GaInN

Choose the Correct or Incorrect Statement

 $8 \times 1 = 8$

Q559.Choose the correct statements

- I) Carrier signal does not have information.
- II) Carrier wave usually have a much higher frequency.

III) Carrier signal is used ot carry the baseband signal.

- IV) Carrier signal cannot be transmuted to long distance with less attenuation.
- (a) I, II and III only
- (b) I and II only
- (c) I and III only
- (d) I, II, III and IV

Q560. Choose the correct statements

- (I) Amplitude modulation is used in radio and TV brad casting.
- (II) Phase of the carrier signal remain constant in amptitude modulation.
- (III) Noise level is low in AM.

- (IV) Baseband signal carries information.
- (a) I, II and III only
- (b) I, II and IV only
- (c) I and II only
- (d) I, II, III and IV

Q561.Choose the Incorrect statements

- (a) PM wave is similar to AM wave.
- (b) PM generally uses a smaller bandwidth than FM.
- (c) FM signal produced from PM signal is very stable.
- (d) FM and PM waves are completely different for square wave modulating signal.

Q562. Choose the Incorrect statements

- (a) Input transducer converts variations in physical quantity.
- (b) The electrical equivalent of the original information is called the baseband signal
- (c) Transducer converts electrical energy into sound energy
- (d) Microphone is an example of transducer.

Q563.Correct Statement

- (I) Transistor can be operated efficiently in an operating point
- (II) Variations of Ic and VCE takes place in this point.
- (III) Q points determine the working point of a transistor.
- (IV) Transistor is a semiconductor device used to amplify or switch electronic signals.
- (a) I and II only
- (b) II and III only
- (c) I, II and III only
- (d) Í, II, III and IV only

Q564.Correct Statement

- (I) Germanium atom has 32 orbiting electrons.
- (II) Diode has 2 terminals.
- (IIÍ) mA is the unit used to represent the level of a diode forward current $I_{\rm F}$
- (IV) The diffused impurities with 3 valence electrons are called donor atoms.
- (a) I, II and III only
- (b) III and IV only
- (c) I, II and IV only
- (d) I, III and IV only

Q565.Incorrect statements

- (a) Amplification is the process of increasing the signal strength.
- (b) A logic gate is an electronic circuit.
- (c) Logic gate functions based on digital signals.
- (d) Logic gates having one or more than and one or more than outputs inputs.

Q566.Incorrect statements

- (a) A and B are inputs and Y is the output for OR gate.
 (b) A is the input and Y is the output for NOT gate.
 (c) A and B are outputs and Y is the input for NOR gate.
 (d) A and B are inputs and Y is the output for Ex-OR gate.