RAVI MATHS TUITION CENTER, CHENNAI – 82. PH - 8056206308

12TH MATHS MODEL PAPER 10

Maths

Date: 16-Nov-19

Reg.No.:

12th Standard

Exa	am Time: 03:00:00 Hrs				Total Marks : 90			
		PART – I			20 X 1 =20			
	A	ANSWER ALL THE QU	ESTIONS.					
1)	In a square matrix the minor M_{ij} and the co-factor A_{ij} of and element a_{ij} are related by							
	(a) $A_{ij} = -M_{ij}$ (b)	$A_{ij} = M_{ij} (c) A$	$a_{ij} = (-1)^{i+j} M_{ij}$	(d) $A_{ij} = (-1)^{i-j} M_{ij}$				
2)	If $x = \cos\theta + i \sin\theta$, then $x^n + \frac{1}{x^n}$	is						
	(a) $2 \cos n\theta$	(b) $2 i \sin n\theta$	(c) $2^n \cos\theta$	(d) $2^n i \sin\theta$				
3)	$sin\left\{2cos^{-1}\left(rac{-3}{5} ight) ight\}=$							
	(a) $\frac{6}{15}$	(b) $\frac{24}{25}$	(c) $\frac{4}{5}$	(d) $\frac{-24}{25}$				
		20	5	25				
4)	Equation of tangent at (-4, -4) o							
	•	(b) $2x + y - 4 = 0$	(c) $2x - y - 12 = 0$	(d) $2x + y + 4 =$	0			
5)	If e_1, e_2 are eccentricities of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ then							
	(a) $e_1^2 - e_2^2 = 1$	(b) $e_1^2 + e_2^2 = 1$		(d) $e_1^2 - e_2^2 =$	2			
6)	The value of $\left \vec{a}+\vec{i}\right ^2+\left \vec{a}+\vec{j}\right ^2+\left \vec{a}+\vec{k}\right ^2$ if $ a =1$ is							
		(b) 1	(c) 2	(d) 3				
7)	The curve $y = e^x$ is							
	(a) convex (b) conca	ive (c) convex i	ipwards (d) concave upwards				
8)	If $x = r \cos \theta$, $y = r \sin$, then $\frac{\partial r}{\partial x} = \dots$							
		o) sin θ	(c) $\cos \theta$	(d) cosec θ				
9)	The area enclosed by the curve $y^2 = 4x$, the x-axis and its latus rectum is sq.units.							
	0	b) $\frac{4}{3}$	(c) $\frac{8}{3}$	(d) $\frac{16}{3}$				
10)	The general solution of the diffe	erential equation $\frac{dy}{dx} = \frac{y}{x}$	s					
		$y = k \log x$	(c) $y = kx$	(d) $\log y = kx$				
11)	The general solution of $x \frac{dy}{dx} = y$	/ is						
		$x^2+y^2=c$	(c) $x^2-y^2=c$	(d) $y=e^x$				
12)	A random variable X has binom	nial distribution with n = 25	and $p = 0.8$ then standard de	eviation of X is				
	(a) 6	(b) 4	(c) 3	(d) 2				
13)	Which one of the following is a	binary operation on N?						
	(a) Subtraction ((b) Multiplication	(c) Division	(d) All the above				
14)	If A is a orthogonal matrix, then	1						
	$(1) AA^{T} = A^{T}A = I$							
	(2) A is non-singular							
	(3) IAI = 0							
	(4) $A^{-1} = A^{T}$							

15) When z = x + iy, then iz is

(1) x-iy (2) i(x+iy)

- (3) -y+ix
- (4) Rotation of by 90° in the counter clockwise direction
- 16) If ax + by = 1, $Cx^2 + dy^2 = 1$ have only one solution, then
 - $(1) \frac{a^2}{c} + \frac{b^2}{d} = 1$
 - (2) $x = \frac{a}{c}$

 - $(3) x = \frac{c}{a}$ $(4) x = \frac{b}{d}$
- 17) If $u = \log\left(\frac{x^2 + y^2}{xy}\right)$ then
 - (1) u is a homogeneous function
 - $(2) x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$
 - (3) $\frac{x^2+y^2}{xy}$ is a homogeneous function
 - (4) $\frac{x^2 + y^2}{xy}$ is a homogeneous function of degree 0.
- 18) If $\frac{dy}{dx} = \frac{x-y}{x+y}$ then
 - 1) xdy+y dx=x dx+y dy
 - 2) $\int d(xy) = \int xdx + \int ydy$
 - 3) $x^2-y^2+2xy=c$
 - 4) $x^2-y^2-2xy=c$
- 19) Identify the false statement.
 - (1) All the stationary numbers are critical numbers.
 - (2) At the stationary point, the first derivative is zero.
 - (3) At critical numbers, the first derivative does not exist.
 - (4) All the critical numbers are stationary numbers.
- 20) If p is true and q is false, then which of the following is not true?
 - (1) $p \rightarrow q$ is F
 - (2) p v q is T
 - (3) $p \wedge q$ is F
 - (4) $p \Leftrightarrow q \text{ is } F$

PART - II $7 \times 2 = 14$

ANSWER ANY 7 QUESTIONS IN WHICH QUESTION NO. 30 IS COMPULSORY.

- 21) For any 2 x 2 matrix, if A (adj A) = $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ then find |A|.
- 22) If 1, ω , ω^2 are the cube roots of unity show that $(1+\omega^2)^3 (1+\omega)^3 = 0$
- Prove that $2tan^{-1}\left(\frac{2}{3}\right) = tan^{-1}\left(\frac{12}{5}\right)$
- 24) Find the equation of tangent to the circle $x^2 + y^2 + 2x 3y 8 = 0$ at (2, 3).
- 25) If $\vec{a}=\stackrel{\wedge}{i}+2\stackrel{\wedge}{j}+3\stackrel{\wedge}{k}$, $\vec{b}=-\stackrel{\wedge}{i}+2\stackrel{\wedge}{j}+\stackrel{\wedge}{k}$ and $\vec{c}=3\stackrel{\wedge}{i}+\stackrel{\wedge}{j}$ find $\frac{\lambda}{c}$ such that $\vec{a}+\lambda\vec{b}$ is perpendicular to \vec{c}
- 26) Evaluate $\int_0^1 \frac{e^x}{1+e^{2x}} dx$
- 27) $\frac{dy}{dx} + \frac{y}{x \log x} = \frac{\sin 2x}{\log x}$
- 28) The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function $f(x) = \begin{cases} 3e^{-3x} & x > 0 \\ 0 & elsewhere \end{cases}$

function
$$f(x) = \left\{ egin{array}{ll} 3e^{-3x} & x > 0 \ 0 & elsewhere \end{array}
ight.$$

Find the expected life of this electronic equipment.

29) Construct the truth table for the following statements.

$$(\neg p \rightarrow r) \land (p \leftrightarrow q)$$

30) Let $G = \{1, w, w^2\}$ where w is a complex cube root of unity. Then find the universe of w^2 . Under usual multiplication.

PART - III
$$7 \times 3 = 21$$

ANSWER ANY 7 QUESTIONS IN WHICH QUESTION NO. 40 IS COMPULSORY

- 31) If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, show that it must be equal to $\frac{pq' p'q}{q q'}$ or $\frac{q q'}{p' p}$.
- 32) Find the value of the expression in terms of x, with the help of a reference triangle. $cos(tan^{-1}(3x-1))$
- 33) The equation $y = \frac{1}{32} x^2$ models cross sections of parabolic mirrors that are used for solar energy. There is a heating tube located at the focus of each parabola; how high is this tube located above the vertex of the parabola?
- 34) Find the equation of the plane passing through the line of intersection of the planes x + 2y + 3z = 2 and x y z + 11 = 3 and at a distance $\frac{2}{\sqrt{3}}$ from the point (3, 1, -1)
- 35) Determine the intervals of concavity of the curve $y = 3 + \sin x$.
- 36) Use linear approximation to find an approximate value of $\sqrt{9.2}$ without using a calculator.
- 37) Prove that $\int_0^{\frac{\pi}{4}} \log(1+\tan x) dx = \frac{\pi}{8} \log 2$.
- 38) The growth of a population is proportional to the number present. If the population of a colony doubles in 50 years, in how many years will the population become triple?
- 39) Let X be a random variable denoting the life time of an electrical equipment having probability density function

$$f(x) = \left\{egin{array}{ll} ke^{-2x} & for x > 0 \ 0 & for x \leq 0 \end{array}
ight.$$

Find

- (i) the value of k
- (ii) Distribution function
- (iii) P(X < 2)
- (iv) calculate the probability that X is at least for four unit of time
- (v) P(X = 3)
- 40) Determine whether * is a binary operation on the sets given below.

$$a*b=min (a,b) on A={1,2,3,4,5}$$

 $7 \times 5 = 35$

ANSWER ALL THE QUESTIONS.

41) a) Solve $(1+x^3)\frac{dy}{dx} + 6x^2y = 1+x^2$.

(OR)

b) A random variable X has the following probability mass function

X	1	2	3	4	5	6
f(x)	k	2k	6k	5k	6k	10k

Find

- (i) $P(2 \le X \le 6)$
- (ii) $P(2 \le X < 5)$
- (iii) P(X ≤4)
- (iv) P(3 < X)
- 42) a) Evaluate $\int_0^{2a} x^2 \sqrt{2ax x^2} dx$

(OR)

b)

Let A be Q\{1\}. Define * on A by x*y = x + y - xy. Is * binary on A? If so, examine the commutative and associative properties satisfied by * on A.

43) a) Discuss the monotonicity and local extrema of the function $f(x) = log(1+x) - \frac{x}{1+x}, x > -1$ and hence find the domain where, $log(1+x) > \frac{x}{1+x}$

(OR)

- b) Find the differential equation of the family of parabolas y^2 ax = 4, where a is an arbitrary constant.
- 44) a) The maximum and minimum distances of the Earth from the Sun respectively are 152×106 km and 94.5×106 km. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the other focus.

(OR)

- b) Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent.
- 45) a) Find all zeros of the polynomial $x^6-3x^5-5x^4+22x^3-39x^2-39x+135$, if it is known that 1+2i and $\sqrt{3}$ are two of its zeros.

(OR)

- b) Let $f(x, y) = \sin(xy^2) + e^{x^3 + 5y}$ for all $\in \mathbb{R}^2$. Calculate $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$
- 46) a) Simplify: $\left(-\sqrt{3}+3i\right)^{31}$

(OR)

- b) Find the vertex, focus, equation of directrix and length of the latus rectum of the following: $y^2-4y-8x+12=0$
- 47) a) Determine the values of λ for which the following system of equations x + y + 3z = 0, $4x + 3y + \lambda z = 0$, 2x + y + 2z = 0 has
 - (i) a unique solution
 - (ii) a non-trivial solution

(OR)

b) By using Gaussian elimination method, balance the chemical reaction equation:

$$C_2 H_5 + O_2 \rightarrow H_2O + CO_2$$
