Exam Paper

Test / Exam Name: MCQS PREVIOUSLY ASKED

Student Name:

Standard: 12TH SCIENCE

Section:

Subject: MATHEMATICS Roll No.:

Questions: 240 Time: 60 Mins Marks: 240

Q1. The integrating factor of the differential equation $(1-x^2)\frac{dy}{dx} + xy = ax, -1 < x < 1$, is:

1 Marks

C. $\frac{1}{1-v^2}$

Q2. Write the order and the degree of the following differential

1 Marks

 $x^3 \left(\frac{d^2 y}{d x^2}\right)^2 + x \left(\frac{d y}{d x}\right)^4 = 0$

Q3. A is a square matrix of order 3 and |A| = 7. Write the value of |A| = 7. adj. A |.

1 Marks

Q4. Find the scalar components of the vector \overrightarrow{AB} with initial point A(2, 1) and terminal point B(-5, 7).

1 Marks

Q5. The value of $(\hat{1} \times \hat{1}) \cdot \hat{1} + (\hat{1} \times \hat{1}) \cdot \hat{k}$ is:

1 Marks

A. 2

C. 1

D. -1

Q6. Two cards are drawn at random and one-by-one without replacement from a well-shuffled pack of 52 playing cards. Find the probability that one card is red and the other is black.

1 Marks

Q7. Evalute:

1 Marks

 $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos^2 x dx.$

Q8. if A is a 3×3 matrix and |3A| = K|A|, then write the value of k.

1 Marks

Q9. The principal value of $\tan^{-1}\left(\tan\frac{3\pi}{5}\right)$ is:

1 Marks

Q10. Evaluate:

1 Marks

$$\int_{0}^{2} \sqrt{4-x^2} dx .$$

Q11. Find the differential equation representing the family of curves y = $-A \cos 3x + B \sin 3x$.

1 Marks

Q12. Evaluate:

 $-\sin 60^{o}$ $\cos 60^{o}$

Q13. The Victors $3\hat{1} - \hat{1} + 2\hat{k}$, $2\hat{1} - \hat{1} + 3\hat{k}$ and $\hat{1} + \lambda\hat{1} - \hat{k}$ are coplanar if value of λ is:

D. Any real number

Q14. Let * be a 'binary' operation on N given by a * b = LCM (a, b) for all a, b \in N. Find 5 * 7.

1 Marks

1 Marks

Q15. Write the antiderivative of

1 Marks

$$\left(3\sqrt{x} + \frac{1}{\sqrt{x}}\right).$$

Q16. If Vectors \overrightarrow{a} and \overrightarrow{b} are such that $|\overrightarrow{a}| = \frac{1}{2}$, $|\overrightarrow{b}| = \frac{4}{\sqrt{3}}$ and $|\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{\sqrt{3}}$, then

1 Marks

find $|\overrightarrow{a}, \overrightarrow{b}|$.

Given a skew-symmetric matrix $A = \begin{bmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{bmatrix}$ the value of $(a + b + c)^2$ is

1 Marks

Q18. \(\int_\limits{1}^{\text{e}} \dfrac{\log\text{x}}\\text{dx},\) is equal to:

1 Marks

A.
$$\frac{e^2}{2}$$

C. $\frac{1}{2}$

B. 1 D. –∞

Q19. The area of a triangle formed by vertices O, A and B, where $\vec{OA} = \hat{1} + 2\hat{1} + 3\hat{k}$ and $\vec{OB} = -3\hat{1} - 2\hat{1} + \hat{k}$ is:

1 Marks

A.
$$3\sqrt{5}$$
 sq. units

B. $5\sqrt{5}$ sq. units

C.
$$6\sqrt{5}$$
 sq. units

D. 4 sq. units

Q20. If vectors \vec{a} and \vec{b} are such that, $|\vec{a}| = 3$, $|\vec{b}| = \frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then write the angle between \vec{a} and \vec{b} .

1 Marks

Q21. Write the distance of the point (3, -5, 12)

1 Marks

from x-axis.

Q22. Show that the function $y = ax + 2a^2$ is a solution of the differential equation $2\left(\frac{dy}{dx}\right)^2$ + $x\left(\frac{dy}{dx}\right) - y = 0.$

1 Marks

Q23. The amount of pollution content added in air in a city due to x-diesel vehicles is given by $P(x) = 0.005x^3$ 1 Marks $+ 0.02x^2 + 30x$. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.

Q24. The two vectors $\hat{1} + \hat{k}$ and $3\hat{1} - \hat{1} + 4\hat{k}$ represent the two sides AB and AC, respectively of a \triangle ABC, Find the length of the median through A.

1 Marks

Q25. If a line makes angles 90^0 , 60^0 and θ with x, y and z-axis respectively, where θ is acute, then find θ .

1 Marks

Q26. If
$$\begin{bmatrix} x+y & 7 \\ 9 & x-y \end{bmatrix} = \begin{bmatrix} 2 & 7 \\ 9 & 4 \end{bmatrix}$$
, then $x.y =$

1 Marks

Q27. Find λ , if the vectors $\overrightarrow{a} = \hat{1} + 3\hat{1} + \hat{k}$, $\overrightarrow{b} = 2\hat{1} - \hat{1} - \hat{k}$ and $\overrightarrow{c} = \lambda \hat{1} + 3\hat{k}$

1 Marks

Q28. If $tan^{-1}x + tan^{-1}y = \frac{\pi}{4}$, xy < 1, then write the value of x

1 Marks

Q29. Write the integrating factor of the differential equation $(\tan^{-1} y - \tan^{-1} y)$ $x)dy = (1 + y^2)dx$.

Q30. Find adj A, if A = $\begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$				1 Marks
Q31. Ashima can hit a target 2 out of 3 time missed the target exactly once is:	es. She tried to hit	the target twice.	The probability that she	1 Marks
A. $\frac{2}{3}$ C. $\frac{4}{9}$	£	В. <u>1</u> D. <u>1</u>		
Q32. The value of $\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$ is:				1 Marks
A. ἄ C. ἄ		3. 7 D. 7 7 6		
Q33. If A is a square matrix of order 3 and	A = 5, then the v	alue of 2A' is:		1 Marks
A10 B. 10		C40	D. 40	
Q34. Find the distance of the plane $3x - 4y + 4y + 6y + 6y + 6y + 6y + 6y + 6y +$	+ 12z = 3 from			1 Marks
Q35. The corner points of the feasible region maximum profit $P = 3x + 2y$ occurs at the p		0), (0, 8), (2, 7),	(5, 4) and (6, 0). The	1 Marks
Q36. If $\overrightarrow{a} = 7\hat{i} + \hat{j} - 4\hat{k}$ and $\overrightarrow{b} = 2\hat{i} - 6\hat{j} + 3\hat{k}$, then find of \overrightarrow{a} on \overrightarrow{b} .	d projection			1 Marks
Q37. Differentiate $\sin^2(\sqrt{x})$ with respect to x.				1 Marks
Q38. Write a vector of magnitude 9 units in the direction of vector $-2\hat{1} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$	on			1 Marks
Q39. If $ x \sin \theta \cos \theta - \sin \theta - x + 1 \cos \theta + 1 + x$ value of x.	= 8, write the			1 Marks
Q40. The distance of point P(a, b, c) from y-	-axis is:			1 Marks
A. b C. $\sqrt{a^2 + c^2}$		B. b ² D. a ² + c ²		
Q41. If $f: R \to R$ be defined by $f(x) = (3 - x^3)$ find $f(x)$.	$(1)^{1/3}$, then			1 Marks
Q42. A problem is given to three students wheevents of solving the problem are independent		5	7 0	1 Marks
Q43. If the matrix $A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$ is skew symbol a' and b'.				1 Marks
Q44. The binary operation $* : R \times R \rightarrow R$ is de $* 3) * 4$.	efined as a $*$ b = 2	2a + b. Find (2		1 Marks
Q45. Find a unit vector in the direction of $\overrightarrow{a} = 3\hat{\imath} - 2\hat{\jmath} + 6\hat{k}$				1 Marks

Q46. Write the number of all possible matrices of order 2×2 with each entry

Q47. The maximum value of slope of the curve $y = -x^3 + 3x^2 + 12x - 5$ is

1, 2 or 3.

3/16

1 Marks

Q48. Write the element a23 of a 3 × 3 matrix A = (a_{ij}) whose elements a_{ij} are given

by $a_{ij} = \frac{|i-j|}{2}$.

Q49. The principal value of $\cot^{-1}(-\sqrt{3})$ is

Q50. Find the length of the perpendicular drawn from the origin to the plane 2x - 3y + 6z

1 Marks

+ 21 = 0.

Q51. If $\overrightarrow{a} = x \hat{i} + 2 \hat{j} - z \hat{k}$ and $\overrightarrow{b} = 3 \hat{i} - y \hat{j} + \hat{k}$ are two equal vectors, then write the value of x + y + z.

1 Marks

1 Marks

1 Marks

1 Marks

Q52. Write the principal value of sec-

 1 (-2).

Q53. If the cartesian equations of a line are $\frac{3-x}{5} = \frac{y+4}{7} = \frac{2z-6}{4}$, write the vector equation

1 Marks

for the line.

Q54. Evalute $\int_{1}^{\infty} |\sin x| dx$

1 Marks

Q55. Find the position vector of a point which divides the join of points with position vectors $\overrightarrow{a} - 2\overrightarrow{b}$ and $\overrightarrow{2a} + \overrightarrow{b}$ 1 Marks externally in the ratio 2:1.

Q56. Find the projection of a \overrightarrow{a} on \overrightarrow{b} if \overrightarrow{a} . \overrightarrow{b} = 8 and \overrightarrow{b} = 1 Marks

 $2\hat{i} + 6\hat{j} + 3\hat{k}$.

Q62.

Q57. If f and g are two functions from R to R defined as f(x) = |x| + x and g(x) = |x| - x, then fog (x) for x < 0 is

1 Marks

B. 2x

D. -4x

Q58. Let A be a 3×3 matrix such that |adj A| = 64. Then |A| is equal to:

1 Marks

B. - 8 only

D. 8 or -8

Q59. If \overrightarrow{a} and \overrightarrow{b} are unit vectors, then what IS the angle between \overrightarrow{a} and \overrightarrow{b} for $\overrightarrow{a}\sqrt{2}\overrightarrow{b}$ to be a unit vector?

1 Marks

Q60. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, write the range of R.

1 Marks

Q61. If f(x) = x + 7 and g(x) = x - 7, $x \in R$, then find = $\frac{d}{dx}(fog)(x)$.

1 Marks

Which of the following statements is true for the function $f(x) = \begin{cases} x + 3, & x \neq 0 \\ & ? \end{cases}$

1 Marks

A. f(x) is continuous and differentiable $\forall x \in \mathbb{R}$

B. f(x) is continuous $\forall x \in \mathbb{R}$

C. f(x) is continuous and differentiable $\forall x \in \mathbb{R} - (0)$

D. f(x) is discontinuous at infinitely many points

Determine the value of the constant 'k' so that the function $f(x) = \begin{cases} \frac{kx}{|x|}, & \text{if } x < 0 \\ 3, & \text{if } x \ge 0 \end{cases}$

1 Marks

continuous at x = 0.

Q64. Find the sum of the degree and the order for the following differential equation:

$\frac{d}{dx} \left[\left(\frac{d^2 y}{dx^2} \right)^4 \right] = 0$				
Q65. Find the projection of the vector $\hat{1} + 3\hat{j} + 7\hat{k}$ on the vector $2\hat{1} - 3\hat{j} + 6\hat{k}$.				
Q66. Given $\int e^x (\tan x + 1) \sec x dx = e^x$ f(x) + c.				
Write f(x) satisfying the above.				
Q67. If the vector $\hat{1} - b\hat{j} + \hat{k}$ is equally inclined to the coordinate axes, then the value of b is:				
A1 B. 1 C. $-\sqrt{3}$ D. $-\frac{1}{\sqrt{3}}$				
Q68. Evaluate: $\int \sec^2 (7 - 4x) dx$	1 Marks			
Q69. Write the value of $(\hat{r} \times \hat{j}) \cdot \hat{k} + \hat{r} \cdot \hat{j}$.	1 Marks			
Q70. If A is a non-singular square matrix of order 3 and $A^2 = 2A$, then find the value of $ A $.				
Q71. If A is a square matrix satisfying $A'A = I$, write the value of $ A $.				
Q72. Evaluate: $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$	1 Marks			
Q73. The function $f: R \rightarrow [-1, 1]$ defined by $f(x) = \cos x$ is	1 Marks			
A. Both one-one and onto. B. Not one-one, but onto. C. One-one, but not onto. D. Neither one-one, nor onto.				
Q74. Form the differential equation representing the family of curves $y = \frac{A}{x} + 5$, by eliminating the arbitrary constant A.				
Q75. If a matrix has 36 elements, the number of possible orders it can have, is:	1 Marks			
A. 13 B. 3 C. 5 D. 9				
Q76. Form the differential equation representing the family of curves $y = mx$, where m is an arbitrary constant.				
Q77. If $\vec{a} = \hat{1} + 2\hat{1} - \hat{k}$ and $\vec{b} = 3\hat{1} + \hat{1} - 5\hat{k}$ find a unit vector in the direction of $\vec{a} - \vec{b}$.				
Q78. Write the direction cosines of a line equally inclined to the three coordinate axes.				
Q79. If $x \in \mathbb{N}$ and $\begin{bmatrix} x+3 & -2 \\ -3x & 2x \end{bmatrix} = 8$, then find the value of x .	1 Marks			
Q80. Write the value of the following integral: \(\int\limits_\text{-x\2}^\text{x\2}\\\\\sin^5\\text{x}\\\\text{dx}\\)	1 Marks			
Q81. If $\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix}$, Write the value of x.	1 Marks			

5/16

Q82. If $f(x) = x x $, then $f'(x) =$		1 Marks
Q83. Find the integrating factor of the differential equation $x \frac{dy}{dx} - 2y = 2x^2$.		1 Marks
Q84. If $y = \cos(\sqrt{3x})$, then find $\frac{dy}{dx}$.		1 Marks
Q85. The value of k for which $f(x) = \begin{cases} 3x + 5, & x \ge 2 \\ kx^2, & x < 2 \end{cases}$ is a continuous function, is:		
A. – 11 C. 11	B. 4/11 D. 11/4	
Q86. Evaluate: $\int_{0.5}^{3} 3^{x} dx$.		1 Marks
Q87. Evaluate: $\int_{0}^{1} \frac{2x}{1+x^2} dx$		1 Marks
Q88. Find the value of x from the following: $\begin{vmatrix} x & 4 \\ 2 & 2x \end{vmatrix} = 0.$		1 Marks
Q89. Let A be a square matrix of order 3×3 . Write the value where $ A = 4$.	of 2A ,	1 Marks
Q90. Find the vector equation of the plane with intercepts 3, -4 and 2 on x , y and z – axis respectively.		
Q91. Find the value of $x + y$ from the following equation: $2\begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}.$		1 Marks
Q92. If a line has direction ratios 2, -1 , -2 , then what are its cosines?	direction	1 Marks
Q93. The principal value of $\cos^{-1}\left(\cos\frac{13\pi}{6}\right)$ is:		1 Marks
A. $\frac{13\pi}{6}$ C. $\frac{\pi}{3}$	B. $\frac{\pi}{2}$ D. $\frac{\pi}{6}$	
Q94. For what value of x, the matrix $\begin{bmatrix} 5-x & x+1 \\ 2 & 4 \end{bmatrix}$ is		1 Marks
singular?		
Q95. An unbiased coin is tossed 4 times. Find the probability one head.	of getting at least	1 Marks

Q96. For A = $\begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$

Q97. Using principal value, evaluate the

write A⁻¹.

following:

6/16

1 Marks

$$\sin^{-1}\left(\sin\frac{3\pi}{5}\right)$$

Q98. If
$$\begin{bmatrix} x-y & z \\ 2x-y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$$
, find the value

1 Marks

of x + y

- **Q99.** The coordinates of the foot of the perpendicular drawn from the point (-2, 8, 7) on the XZ-plane is
- 1 Marks

Q100. Write the principal value of $tan^{-1}(\sqrt{3})$ –

1 Marks

 $\cot^{-1}(-\sqrt{3}).$

Q101. If
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
 .find α satisfying $0 < \alpha < \frac{\pi}{2}$ when $A + A^T = \sqrt{2} I_2$: where A^T is

transpose of A

Q102. The number of points of discontinuity of f defined by f(x)|x| - |x - 1| is

_____'

Q103. If
$$f(x) = x + 7$$
 and $g(x) = x - 7$, $x \in$

1 Marks

R, find (fog) (7)

Q104. The image of the point (2, -1, 4) in the YZ-plane is:

Q105. Let * be a binary operation, on the set of all non-zero real numbers, given by a * b = $\frac{ab}{5}$ for all a, b \in R **1 Marks** - $\{0\}$. Find the value of x, given that 2 * (x * 5) = 10.

Q106.

Evaluate:
$$\int \frac{2 \cos x}{3 \sin^2 x} dx$$

^J 3 sin²x

Q107. Differentiate $e^{\sqrt{3}x}$, with respect to x.

Q108. Write the position vector of the point which divides the join of points with position vectors $3\overrightarrow{a} - 2\overrightarrow{b}$ and $2\overrightarrow{a} + 3\overrightarrow{b}$ in the ratio 2:1.

1 Marks

Q109. If \vec{P} (1, 5, 4) and \vec{Q} (4, 1, -2), find the direction ratios of \vec{PQ} .

1 Marks

Q110. The function f(x) = |x| - x is:

A. Continuous but not differentiable at x = 0.

- B. Continuous and differentiable at x = 0.
- C. Neither continuous nor differentiable at x = 0.
- D. Differentiable but not continuous at x = 0.

Q111. What is the value of the determinant

- 0 2 0 2 3 4 ?
- 4 5 6
- Q112. A black die and a red die are rolled together. Find the conditional probability of obtaining a sum greater 1 Marks than 9 given that the black die resulted in a 5.
- **Q113.** $\int x^2 e^{x^3} dx$ equals:

A.
$$\frac{1}{3}e^{x^3} + C$$

C. $\frac{1}{3}e^{x^3} + C$

B.
$$\frac{1}{3}e^{x^4} + C$$

D. $\frac{1}{3}e^{x^2} + C$

7/16

Q114. If A is an invertible matrix of order 3 and |A| = 5, Then find 1 Marks Q115. If |A| = 2, where A is a 2 × 2 matrix, then $|4A^{-1}|$ equals: 1 Marks D. $\frac{1}{32}$ C. 8 Q116. 1 Marks Evaluate: $\int_{2}^{3} \frac{1}{x} dx.$ **Q117.** If $A = \begin{pmatrix} 3 & 5 \\ 7 & 9 \end{pmatrix}$ is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, 1 Marks then write the matrix P. Q118. Direction cosines of a line perpendicular to both x-axis and z-axis are: 1 Marks B. 1, 1, 1 C. 0, 0, 1 D. 0, 1, 0 **Q119.** Find: 1 Marks $\int \frac{\sin^2 x - \cos^2 x}{\sin x \cos x} dx$ Q120. For what value of 'a' the vectors 2i - 3j + 4k and 4i - 6j - 8k are 1 Marks collinear? **Q121.** Find the co-factor of a_{12} in the following: 1 Marks 0 **Q122.** If the binary operation * on the set of integers Z, is defined by $a^*b = a + 3b^2$, then find the 1 Marks value of 2*4. Q123. If A is a square matrix such that $A^2 = A$, then $(I - A)^3 + A$ is equal to: 1 Marks C. I - A D. I + A **Q124.** If $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} \times \vec{b}| = 6$, then the value of $\vec{a} \cdot \vec{b}$ is 1 Marks C. $3\sqrt{3}$ D. $6\sqrt{3}$ Q125. The sum of the order and the degree of the differential equation $\frac{d^2y}{dy^2} + (\frac{dy}{dx}) = \sin y$ is: 1 Marks C. 3 A. 5 D. 4 **Q126.** If A is a square matrix of order 3, with |A| = 9, then write the value 1 Marks of [2.adj.A]. Q127. For what value of k may the function $\begin{cases} k(3x^2 - 5x), & x \le 0 \\ \cos x, & x > 0 \end{cases}$ become continuous? 1 Marks A. 0 B. 1 D. No value Q128. If $(a + bx)e^{x} = x$, then 1 Marks prove that $x^3 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^2$. **Q129.** If $\begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix} =$ 1 Marks $\begin{pmatrix} -4 & 6 \\ -9 & x \end{pmatrix}$ write the value of x.

Q130. Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. State whether f is one-one or not. Q131. Solve the following matrix equation for 1 Marks $x; [x \ 1] \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0.$ Q132. Find the Cartesian equation of the line which passes through the point (-2, 4, -5) and is parallel to the 1 Marks line $\frac{x+3}{3} = \frac{4-y}{5} = \frac{z+8}{6}$. Q133. Find the integrating factor of the differential 1 Marks equation $\left(\frac{e^{-2}\sqrt{x}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) = \frac{dx}{dy} = 1.$ Q134. Write the differential equation representing the family of curves y = mx, where m is an 1 Marks arbitrary constant. **Q135.** What is the range of the function f(x)1 Marks Q136. Matrix A = $\begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$ is given to be symmetric, find values 1 Marks of a and b. Q137. Construct a 2×2 matrix $A = [a_{ij}]$ whose elements are given by 1 Marks $a_{ii} = |(i)^2 - i|$. Q138. The derivative of log x with respect to $\frac{1}{x}$ is 1 Marks Q139. The vector equation of XY-plane is 1 Marks A. $\vec{r} \cdot \hat{k} = 0$ B. $\vec{r} \cdot \hat{i} = 0$ $C. \vec{r}.\hat{1} = 0$ $D. \vec{r}. \hbar = 1$ Q140. If A and B are square matrices of the same order 3, such that |A| = 2 and AB = 21, write the 1 Marks **Q141.** $\tan \left(\sin^{-1} \frac{3}{5} + \tan^{-1} \frac{3}{4} \right)$ is equal to: 1 Marks Q142. The interval in which the function f given by $f(x) = x^2 e^{-x}$ is strictly increasing, is: 1 Marks B. $(-\infty, 0)$

value of |B|.

A. $(-\infty, \infty)$ C. (2, ∞) D. (0, 2)

Q143. For what value of x, is the following matrix 1 Marks singular?

3-2x x + 1

Q144. If $|\vec{a} \times \vec{b}|^2 + |\vec{a}.\vec{b}|^2 = 400$ and $|\vec{a}| = 5$, then write the 1 Marks value of $|\vec{b}|$.

Q145. A number is chosen randomly from numbers 1 to 60. The probability that the chosen number is a 1 Marks multiple of 2 or 5 is:

A.
$$\frac{2}{5}$$
C. $\frac{7}{10}$
B. $\frac{3}{5}$
D. $\frac{9}{10}$

Q146. A relation in a set A is called _____ relation, if each element of A is related to itself.

1 Marks

Q147. Find the cofactors of all the elements of $\begin{bmatrix} 1 & -2 \\ 4 & 2 \end{bmatrix}$.

1 Marks

Q148. If [x] denotes the greatest integer function, then

1 Marks

find
$$\int_{0}^{\frac{3}{2}} [x^2] dx$$

Q149. If $\overrightarrow{a} = 4 \mathring{1} - \mathring{j} + \mathring{k}$ and $\overrightarrow{b} = 2 \mathring{1} - 2 \mathring{j} + \mathring{k}$, then find a unit vector parallel to the vector $\overrightarrow{a} + \overrightarrow{b}$.

1 Marks

Q150. Write the vector equation of a line given by $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$.

1 Marks

Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$

1 Marks

Q152. Find the value of x - y, if $2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix}$ +

1 Marks

$$\begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}.$$

Q153. Find the value of a if $\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} =$

1 Marks

$$\begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$$

Q154. Evaluate:

$$\int (ax + b)^3$$

1 Marks

Q155. If a matrix has 5 elements, write all possible orders it can have.

1 Marks

Q156. If A is a square matrix of order 3 and |A| = 2 then find the value of |-AA'|.

1 Marks

Q157.
$$\begin{bmatrix} x+1 & x-1 \\ x^2+x+1 & x^2-x+1 \end{bmatrix}$$
 is equal to:

1 Marks

D. 2x3 - 2

Q158. Write the direction cosines of the line joining the points (1, 0, 0) and (0, 1, 1).

1 Marks

Q159. If
$$\begin{bmatrix} 3x & 7 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ 6 & 4 \end{bmatrix}$$
, find the

1 Marks

value of x.

Q160. If A is a square matrix of order 2 and |A| = 4, then find the value of |2.AA'|, where A' is the transpose of matrix A.

C. 0

1 Marks

Q161. For what value of x, is the matrix $A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$ a skew-

1 Marks

symmetric matrix?

Q162. Find $\int \frac{2^{x+1} - 5^{x-1}}{10^x} dx$				1 Marks	
Q163. If A is a non-singular squ	Q163. If A is a non-singular square matrix of order 3 such that $A^2 = 3A$, then value of $ A $ is:				
A. –3	B. 3	C. 9	D. 27		
Q164. Find \overrightarrow{a} . $(\overrightarrow{b} \times \overrightarrow{c})$, if $\overrightarrow{a} = 2^{\circ} + ^{\circ} + ^{\circ} + ^{\circ} + ^{\circ}$ 2j $+^{\circ}$ k and $\overrightarrow{c} = 3^{\circ} + ^{\circ} + ^{\circ} + ^{\circ}$ 2k.	$3\hat{k}$, $\overrightarrow{b} = -\hat{1} +$			1 Marks	
Q165. Evaluate: 2π $\int_0^2 \cos^5 x dx$.				1 Marks	
Q166. For what value of k, the sequations	ystem of linear			1 Marks	
x + y + z = 2 $2x + y - z = 3$					
3x + 2y + kz = 4 has a unique solution?					
Q167. For what value of λ are the vector to each other?	fors $\overrightarrow{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$ and	$\overrightarrow{b} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ prependicular		1 Marks	
Q168. If $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 7 & 11 \\ k & 23 \end{pmatrix}$,then write the			1 Marks	
value of k.					
Q169. $\frac{\pi}{6}$ $\int_{0}^{6} \sec^{2}(x - \frac{\pi}{6}) dx$ is equal to	:			1 Marks	
A. $\frac{1}{\sqrt{3}}$		B. $-\frac{1}{\sqrt{3}}$			
$C.\sqrt{3}$		D. $-\sqrt{3}$			
Q170. Evaluate: 3 √ 2x -				1 Marks	
1 dx					
Q171. The least value of the fun	ction $f(x) = ax + \frac{b}{x}(a > 0)$	0, b > 0, x > 0) is		1 Marks	
Q172. If $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ nd (31 + 4A)	$(3I + 4A) = x^2I, t$	hen the value(s) x is/ are:		1 Marks	
A. $\pm \sqrt{7}$	B. 0	C. ±5	D. 25	4.04	
Q173. If $\int_0^a \frac{1}{4+x^2} dx = \frac{\pi}{8}$, find the value of a.				1 Marks	
Q174. Simplify: $\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$	+			1 Marks	
$\sin\theta \begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}.$					
Q175. From the set {1, 2, 3, 4, $\frac{a}{b}$ is an integer is:	5}, two numbers a	and b (a \neq b) are chosen at randor	n. The probability that	1 Marks	
A. $\frac{1}{3}$		B. 1 /4		11/16	

11/16

C.
$$\frac{1}{2}$$

D. $\frac{3}{2}$

Q176. If $f: R \to R$ be given by $f(x) = (3 - x^3)^{\frac{1}{3}}$, fof $f(x) = (3 - x^3)^{\frac{1}{3}}$

Q177. $|f|\overrightarrow{a}| = 4|\overrightarrow{b}| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 6\sqrt{3}$, then find the value

1 Marks

1 Marks

Q178. If $\triangle = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$, write the minor of the

1 Marks

Q179. If $3A - B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$, then find the

1 Marks

matrix A.

Q180. If $\begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} = A + \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix}$, then find the matrix A.

1 Marks

Q181. Direction cosines of the line $\frac{x-1}{2} = \frac{1-y}{3} = \frac{2z-1}{12}$ are:

B. $\frac{2}{\sqrt{157}}$, $-\frac{3}{\sqrt{157}}$, $\frac{12}{\sqrt{157}}$ D. $\frac{2}{2}$, $-\frac{3}{2}$, $\frac{6}{2}$

1 Marks

Q182. Evaluate, $\int_{0}^{3} \frac{dx}{9+x^2}$

1 Marks

1 Marks

Q183. If $(x - a)^2 + (y - b)^2 = c^2$, for some c > 0, prove that

 $\frac{\left[1+\left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\underline{d^2y}}$ is a constant independent of a and

Q184. If $A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 2 & 3 \\ 3 & 3 & 5 \end{bmatrix}$, then find A

1 Marks

Q185. Let $A = \{1, 3, 5\}$. Then the number of equivalence relations in A containing (1, 3) is:

C. 3

D. 4

Q186. Write the adjoint of the following

matrix:

1 Marks

1 Marks

Q187. Find the differential of the function $\cos^{-1}(\sin 2x)$ w.r.t. x.

1 Marks

Write the degree of the differential equation $x^3 \left(\frac{d^2y}{dy^2}\right)^2$ +

1 Marks

1 Marks

Q189. Evaluate: $\int \cos^{-1}(\sin x) dx$.

Q192. If $\frac{d}{dx}(f(x)) = \log x$, then f(x) equals: 1 Marks B. $x(\log x - 1) + C$ A. $-\frac{1}{x} + C$ C. $x(\log x + x) + C$ D. $\frac{1}{\nabla}$ + C **Q193.** Evaluate : $\sin \left[\frac{\pi}{3} - \right]$ 1 Marks $\sin^{-1}\left(-\frac{1}{2}\right)$ Q194. If |A| = 3 and $A^{-1} = \begin{bmatrix} 3 & -1 \\ \frac{5}{2} & \frac{2}{2} \end{bmatrix}$, then write 1 Marks the adj A. **Q195.** Write the value of \int sec x (sec x + 1 Marks tan x) dx. **Q196.** If f(x) = x + 1, find 1 Marks $\frac{d}{dx}(fof)(x).$ Q197. Find the differential equation representing the family of curves $y = ae^{2x} + 5$, where a is an 1 Marks arbitrary constant. **Q198.** The distance of the origin (0, 0, 0) from the plane -2x + 6y - 3z = -7 is: 1 Marks A. 1 unit B. $\sqrt{2}$ unit D. 3 unit C. $2\sqrt{2}$ unit **Q199.** If $|\vec{a}| = 4$ and $-3 \le \lambda \le 2$, then, $|\vec{\lambda}a|$ lies in: 1 Marks A. [0, 12] C. [8, 12] D. [-12, 8] Q200. If $(2\ 1\ 3) \begin{pmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = A$, then write the order of 1 Marks matrix A. Q201. Evaluate: 1 Marks **Q202.** Write a unit vector in the direction of \overrightarrow{a} = 1 Marks $2\hat{i} - 6\hat{j} + 3\hat{k}$. Find the value of k, so that the function $f(x) = \begin{cases} kx^2 + 5, & \text{if } x \le 1 \\ 2, & \text{if } x > 1 \end{cases}$ is 1 Marks continuous at x = 1. Q204. What is the cosine of the angle which the vector 1 Marks $\sqrt{2}^1+^2+^2$ Q205. Find the general solution of the differential equation

Q190. The two lines x = ay + b, z = cy + d; and x = a'y + b', z = c'y + d' are perpendicular to each other, if: 1 Marks

1 Marks

1 Marks

13/16

Q191. If A is a 3 × 3 invertible matrix, then what will be the value of k if

 $det(A^{-1}) = (det(A)^{k}$

 $e^{y-x}\frac{dy}{dx}=1.$

Q206. If $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ nd (31 + 4A) (3I + 4A) = x^2 I, then the value(s) x is/ are:

D. 25

If

The value of k so that f defined by $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ k & \text{if } x = 0 \end{cases}$ is continuous at x = 0 is

1 Marks

A. 0

A. $\pm\sqrt{7}$

в. 1

C. 1

D. 2

Q208. P and Q are two points with position vectors $3\overrightarrow{a} - 2\overrightarrow{b}$ and $\overrightarrow{a} + \overrightarrow{b}$ respectively. Write the position vector of **1 Marks** a point R which divides the line segment PQ in the ratio 2:1 externally.

Q209. $\int \frac{1}{x \log x} dx$ is equal to:

A. $\frac{(\log x)^2}{2} + c$ C. $\log |x \log x| + c$

B. log | log x| + c

D. $\frac{1}{\log x} + c$

Q210. Find the order of the differential equation of the family of circles of radius 3 units.

1 Marks

1 Marks

1 Marks

Q211. If $\begin{bmatrix} 2x & -9 \\ -2 & x \end{bmatrix} = \begin{bmatrix} -4 & 8 \\ 1 & -2 \end{bmatrix}$, the value of x is

1 Marks

Q212. The order of the differential equation of the family of circles touching x-axis at the origin is:

1 Marks

A. 1

B. 2

C. 3

D. 4

Q213. If $A = \begin{pmatrix} 1 & 23 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 23 & -1 \end{pmatrix}$

(1 -43 -2), find AB|.

1 Marks

Q214. Form the differential equation representing the family of curves $y = A \sin x$, by eliminating the arbitrary constant A.

1 Marks

Q215. If $y = \sin^{-1} x + \cos^{-1} x$, find $\frac{dy}{dx}$.

1 Marks

Q216. Write the coordinates of the point which is the reflection of the point (α, β, γ) in the XZ-plane.

1 Marks

Q217. If for any 2 × 2 square matrix A, A(adj A) = $\begin{bmatrix} 8 & 0 \\ 0 & 8 \end{bmatrix}$, then write the

1 Marks

value of |A|.

Q218. Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is $2\hat{1} - 3\hat{1} + 6\hat{k}$.

1 Marks

Q219. Write the principal value of \cos^{-1}

1 Marks

 $\left(\cos\frac{7\pi}{6}\right).$

Q220. Write the principal value of $tan^{-1}(1) + \frac{1}{2}(1)$

1 Marks

 $\cos^{-1}\left(-\frac{1}{2}\right)$.

Q221. The position vectors of two points A and B are $\overrightarrow{OA} = 2\hat{1} - \hat{j} - \hat{k}$ and $\overrightarrow{OB} = 2\hat{1} - \hat{j} - 2\hat{k}$, respectively. The position vector of a point P which divides the line segment joining A and B in the ratio 2 : 1 is ______.

1 Marks

Q222. $\int 4^X 3^X dx$ equals:

A.
$$\frac{12^{X}}{\log 12} + C$$

C. $\left(\frac{4^{X} \cdot 3^{X}}{\log 4 \cdot \log 3}\right) + C$

B.
$$\frac{4^{X}}{\log 4} + C$$
D. $\frac{3^{X}}{\log 3} + C$

Q223. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} , \vec{b} , \vec{c} = $\vec{0}$, then write the value of

1 Marks

Q224. If $A = \begin{vmatrix} 2 & 3 \\ 5 & -2 \end{vmatrix}$, write A^{-1} in

1 Marks

terms of A.

Q225. Find $\frac{dy}{dx}$, if xy^2 -

1 Marks

 $x^2 = 4$.

Q226. Write the principal value of $\cos^{-1}\left(\frac{1}{2}\right)$ –

1 Marks

$$2\sin^{-1}\left(-\frac{1}{2}\right)$$
.

Q227. Find the interval in which the function f given by $f(x) = 7 - 4x - x^2$ is strictly increasing.

1 Marks

Q228. Write the value of

$$\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix}.$$

1 Marks

Q229. If A is a square matrix of order 2 and |A| = 4, then find the value of $|2 \cdot AA'|$, where A' is the transpose 1 Marks of matrix A.

Q230. Find the value of

1 Marks

$$\int_{0}^{1} \tan^{-1}\left(\frac{1-2x}{1+x-x^{2}}\right) dx.$$

Q231. Find the differential equation representing the family of curves $v = \frac{A}{r} + B$, where A and B are

1 Marks

arbitrary constants.

Q232. Find the value of p if

1 Marks

$$(2^{\hat{1}} + 6^{\hat{1}} + 27^{\hat{k}}) \times (^{\hat{1}} + 3^{\hat{1}} + p^{\hat{k}}) = \vec{0}.$$

Q233. If $y = 5e^{7x} + 6e^{-7x}$, show that

1 Marks

$$\frac{d^2y}{dx^2} = 49y.$$

1 Marks

Evaluate: $\int \frac{x^2}{1+x^3} dx$

Q235. If $\begin{bmatrix} 2x & 5 \\ 8 & x \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ 7 & 3 \end{bmatrix}$, Write the

1 Marks

value of x.

Q236. A function $f: R_+ \longrightarrow R$ (where R_+ is the set of all non-negative real numbers) defined by f(x) = 4x + 3 is: **1 Marks**

A. one-one but not onto

B. onto but not one-one

C. both one-one and onto

D. neither one-one nor onto

Q237. The primitive of $\frac{2}{1+\cos^2 x}$ is:

1 Marks

A. sec2 x

B. 2 sec2 x tan x

C. tan x

D. -cot x

Q238. Find |AB|, if
$$A = \begin{bmatrix} 0 & -1 \\ 0 & 2 \end{bmatrix}$$
 and

$$B = \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix}$$

Q239. Use elementary column operation $C_2 \rightarrow C_2 + 2C_1$ in the following matrix

equation:
$$\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

Q240. If
$$\sin\left(\sin^{-1}\frac{1}{5} + \cos^{-1}x\right) = 1$$
, then find the vatue of x.

1 Marks