RAVI MATHS TUITION CENTER, CHENNAI- 82. WHATSAPP - 8056206308

Solution

12th Standard Chemistry

 $10 \times 2 = 20$

- 1) 1.00 g of a non-electrolyte solute dissolved in 50.0 g of benzene by 0.40 K. The freezing point depression constant of benzene is 5.12 K kg mol⁻¹. Find the molecular mass of the solute.
- 2) State Henry's law and mention some important applications.
- 3) The partial pressure of ethane over a saturated solution containing 6.56×10^{-3} g of ethane is 1 bar. If the solution contains 5.00×10^{-2} g of ethane then what shall be the partial pressure of the gas?
- 4) Calculate molality of 2.5 g of ethanoic acid (CH₃COOH) in 75 g of benzene.
- 5) Define the following terms:
- (i) Mole fraction
- (ii) Isotonic solutions
- (iii) van't Hoff factor
- (iv) Ideal solution
- 6) State Raoult's law for a solution conatining volatile components. How does Roult's law become a special case of Henry's law?
- 7) What concentration of nitrogen should be present in a glass of water at room temperature? Assume temperature of 25° C, a total pressure of 1 atmosphere and mole fraction of nitrogen in air as $0.78[K_{H}$ for nitrogen= 8.42×10^{-7} M/mm Hg].
- 8) (a) Explain the following phenomena with the help of Henry's law.
- (i) Painful condition known as bends.
- (ii) Feeling of weakness and discomfort in breathing at high altitude.
- (iii) Why soda water bottle kept at room temperature fizzes on opening?
- 9) State Raoult's law for solutions of volatile liquids. Taking suitable examples explain the meaning of positive and negative deviations from Raoult's law.
- 10) State the following:
- (i) Raoult's law in its general from in reference to solutions.
- (ii) Henry's law about partial pressure of a gas in a mixture.

 $5 \times 3 = 15$

- 11) If N_2 gas is bubbled through water at 293 K, how many millimoles of N_2 gas would dissolve in 1 liter of water? Assume that N_2 exerts a partial pressure of 0.987 bar. Given Henry's law constant for N_2 at 293 K is 76.48 kbar.
- 12) 45 g of ethylene glycol (C₂H₄O₂) is mixed with 600 g of water. Calculate
- (i) the freezing point depression and
- (ii) the freezing point of the solution.
- 13) What mass of ethylene glycol (molar mass = 62.0 g mol^{-1}) must be added to 5.50 kg of water to lower the freezing point of water from 0°C to -10°C? (K_f for water = $1.86 \text{ K kg mol}^{-1}$)
- 14) Calculate the freezing point depression expected for 0.0711 m aqueous solution of Na_2SO_4 . If this solution actually freezes at -0.320 °C, what would be the value of van't Hoff factor? (K_f for water is 1.86 °C mol⁻¹).
- 15) Calculate the boiling point of solution when 4 g of $MgSO_4$ (M = 120 g mol⁻¹) was dissolved in 100 g of water, assuming $MgSO_4$ undergoes complete ionization. (K_b for water = 0.52 K kg mol⁻¹)

 $5 \times 5 = 25$

- 16) How many mL of 0.1 M HCl are required to react completely with 1 g mixture of Na₂CO₃ and NaHCO₃ containing equimolar amounts of both?
- 17) Calculate the mass of ascorbic acid (vitamin C, C_6H_{806}) to be dissolved in 75 g of acetic acid to lower its melting point by 1.5° C.(K_f for acetic acid = 3.9K kg mol⁻¹)

- 18) (a) Explain the following:
- (i) Henry's law about dissolution of a gas in a liquid.
- (ii) Boiling point elevation constant for a solvent.
- (b) A solution of glycerol ($C_3H_8O_3$) in water was prepared by dissolving some glycerol in 500 g of water. This solution as a boiling point of 100.42 °C. What mass of glycerol was dissolved to make this solution? (K _b for water = 0.512 K kg mol⁻¹)
- 19) (a) Differentiate between molarity and molality for a solution. How does a change in temperature influence their values?
- (b) Calculate the freezing point of an aqueous solution containing 10.50 g of MgBr₂ = 184 g) (K $_{\rm f}$ for water 1.86 K kg mol⁻¹)
- 20) (a) Define the following terms:
- (i) Mole fraction,
- (ii) Ideal solution.
- (b) 15.0 g of an unknown molecular material is dissolved in 450 g of water. The resulting solution freezes at 0.34 $^{\circ}$ C. What is the molar mass of the material? [K_f for water=1.86 K Kg mol⁻¹]